MAXIMAL SPECTRA AND ULTRASCHEMES

JIEWEI XIONG

AsstrAcT. The title refers to [EGA IV:3, §10.9]. In this note we explain why when working with schemes of
finite type over a field, it’s “natural” to ignore nonclosed points and replace the Spec’s in our language with
Spm’s.

We first recall some basic concepts in our modern common language of schemes. All rings are
commutative with identity, and in particular Ring denote the category of commutative rings with identity.

Definition 1. For a ring A, the spectrum of A, denoted by Spec A, is the set of all prime ideals of A.
For S c A, define V(S) := {p € SpecA : S C p}, and for f € A, define D(f) := {p € SpecA: f ¢ p}.
Endow Spec A with the Zariski topology: a subset of Spec A is closed if it equals V(S) for some S C A.

Definition 2. x € Spec A is a closed point if {x} is a closed set.

Note that by definition of the Zariski topology, {x} is closed if and only if {x} = {p € SpecA : S C p}
for some S C A, that is, the only prime ideal of A that includes S is x. This is equivalent to that x is a
maximal ideal of A.

The maximal spectrum of A, denoted by Spm A, is the set of all maximal ideals of A, which then
corresponds exactly to the closed points of Spec A.

Definition 3. A topological space X together with a (structure) sheaf of rings Ox on it is called a ringed
space. For now we can ignore the definition of a sheaf of rings and simply think of them as a function that
takes the open sets of X as inputs and has rings as outputs.
A morphism of ringed spaces (X,Ox) — (Y, Oy) is defined naturally: it’s
(1) a continuous map of topological spaces 1t : X — Y (the morphisms of Top), together with
(2) anatural transformation of functors f : Oy — 7*Ox (the morphisms of Ring®, the category of
functors O — Ring, where D is the poset category of open sets of Y).

Definition 4. Define the structure sheaf Ospec 4 : C — Ring on the topological space Spec A (where C is
the poset category of open sets of Spec A) as follows: note that D(f) forms a basis of the Zariski topology,
and let Ospec A(D(f)) = S~1A where

S={geA:D(f)c D)}
This sheaf together with the topological space Spec A is an affine scheme, denoted by (Spec A, Ospec 4), or
simply Spec A by abuse of notation.
Recall that there is an isomorphism Ospec 4(D(f)) S A 7 where Ar means A localised at {1, f, f 2.}

It's tempting to expect a morphism of affine schemes (Spec A, Ospec4) — (Spec B, Ospec ) to be simply
a morphism of them as ringed spaces. However, we also expect these morphisms to behave well with
the underlying rings A and B; that is, since each ring homomorphism B — A gives rise to a Zariski
continuous map Spec A — Spec B (preimage of a prime ideal under a ring homomorphism is prime),
each morphism of affine schemes should arise from some ring homomorphism as well.

More precisely, let ¢ : B — A be a ring homomorphism, and let (%, f) : SpecA — SpecB be a
morphism of ringed spaces where 7 is induced by ¢, and for g € B,

fD(g) : Ospecs (D(8)) = Ospeca (17 (D(3)))
is identified with the ring homomorphism By — Ag(,), again induced by ¢. This (7, f) is denoted by
(“qb, a) in [EGA 1, 1.6.1], which is the form we expect every morphism of affine schemes to be of. It turns
our we do need to add a condition to our definition, and first we consider an example of a morphism
(7, f) that doesn't satisfy this condition and therefore is not of the form (” ¢, 65)

Example 5. Let k be a field and consider a morphism of ringed spaces (7, f) : Spec k(x) — Spec k[y],).-

Since k(x) is a field, the only prime ideal is (0), and any prime ideal of k[y],) correspond to a prime

ideal p of k[y] with p N k[y]\(y) = @, i.e. p C (y), but there are only two such p’s: (0) and (y). We then
1



2 JIEWEI XIONG

write Spec k[y],) = {[(O)], [(y)]}, where [(y)] is the unique maximal ideal of the local ring k[y],). Note
that [(0)] is not closed: it is impossible that for some set S C k[y],) we have that the only prime ideal
including S is the zero ideal. So for 7 to be continuous, ((0)) can only be [(y)]. Define f globally by
sending k identically to k and y to x.
We claim this does not arise from any ring homomorphism ¢ : k[y](,) — k(x). Indeed, suppose it does
arise from some ¢. By our definition of 77, ¢ sends y to 0. Now let g € k[y](,).
(1) If g € [(y)], then k(x)4(g) = k(x)o = 0, contradicting our definition of f.
(2) If g ¢ [(y)] then g is a unit, so k[y](y)g = k[yly) and k(x)y(g) = k(x). Hence ¢ is, by our definition
of f, the homomorphism that fixes k and sends y to x, contradicting our definition of 7.
The problem with the map above is that f does not send the unique maximal ideal of k[y],), i.e. [(y)],
into the unique maximal ideal of k(x), i.e. (0).

EGA provided a condition we impose on (7, f) to avoid the situation above.

Theorem 6 ([EGA I, Théoreme 1.7.3]). A necessary and sufficient condition that (7, f) is of the form
(“gb, (5) is that for each p € Spec A, the map of stalks f,f : OspeC B,f(n) = Ospeca,p : Bfp) = Ay induced is a

local ring homomorphism, that is, ff _1(;3) = f(p).
This is the condition we commonly use:

Definition 7. A morphism of affine schemes Spec A — Spec B is a morphism between them as ringed spaces
such that the condition of 6 is satisfied.

The categorical result is that the two functors
A (Spec 4, OSpecA)

and
(SPeC A, OSpecA) — OSpecA(SpeC A) =A
give an equivalence between Ring and Aff°P, the opposite category of affine schemes ([EGA I, Corollaire
1.7.4]). The punchline is: the theory of affine schemes is exactly the theory of commutative rings!
We are now interested in affine schemes of finite type over a field:

Definition 8. A ring homomorphism ¢ : A — B is of finite type if it makes B a finitely generated A-algebra,
that is, there is a surjective homomorphism A[xo, ..., x,] — B for some n € N that factors through ¢.
An affine scheme Spec A is of finite type over another affine scheme Spec B if there is a morphism of
affine schemes Spec A — Spec B that arises from a ring homomorphism B — A of finite type.
Spec A is of finite type over a field k if it’s of finite type over Speck, or, equivalently, if A is a finitely
generated k-algebra.

They are sometimes also called algebraic affine k-schemes, and specifically when we say algebraic groups
in a scheme-theoretic context, we mean algebraic group k-schemes.[Mil22, p. 4] (Group schemes are schemes
whose functor of points takes values in Grp, whatever this means.)

In [Mil22, p. 2], the author says

as we always work with schemes of finite type over a base field k, it is natural to ignore
the nonclosed points (which we do),

that is, they only consider Spm A instead of Spec A. In [Per08, B.1.a], also dealing with affine schemes
Spec A of finite type over k, the author even says they sometimes replace the notation Spm A altogether
with Spec A, humorously adding “if we are sure Grothendieck is not listening”. The key question is:

Question 9. If we identify a ring A with an affine scheme (Spec A, Ospec 4), What's special about a finitely
generated k-algebra A that enables us to identify it with only (Spm A, Ospm 4)? (And what even is Ospm 4?)

In fact, Grothendieck himself provided a justification for this choice in [EGA IV:3, §10.9], titled “maximal
spectra and ultraschemes” (we customarily translate “préschéma” to “scheme”), although he did avoid to
use the results of the section later [les résultats de ce numéro ne seront pas utilisés par la suite]. There
they develop in the full generality of jacobson schemes. For us we first need to know:

Definition 10. A ring A is jacobson if every radical ideal of A is the intersection of the maximal ideals
containing it.

Lemma 11 ([Stacks, 00G2]). If every prime ideal of A is the intersection of the maximal ideals containing
it, then A is jacobson.
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Proof. Recall that every radical ideal is the intersection of the prime ideals containing it.[AM69, 1.14] O

Definition 12 ([Stacks, 01P3]). An affine scheme Spec A is jacobson if A is jacobson.
Lemma 13 ([Stacks, 02]6]). Any affine scheme of finite type over a field is jacobson.

Proof. Let A be a finitely generated k-algebra and write A = k[xo,...,x,]/] for some n € N and
J <k[xq,...,x,] =t R. We need to prove A is a jacobson ring.

We first prove that R is jacobson. Let I <t R be radical. The inclusion I C (,,5; m is trivial, and to prove
I > (Nyor M, we show the contrapositive: Vf € R, f ¢ I = f ¢ (\,5; M. So let f € R\I and we want
to find a maximal ideal m < R such that I ¢ mbut f ¢ m. Consider the localisation (R/I)s. This ring is

nonzero, since otherwise f k e I for some k € N and since | is radical, f €I, acontradiction. Hence choose
a maximal ideal m’ of (R/I)f, and we claim the preimage m of m’ in R is the m we want to find. By [AM69,
3.11(iv)], f € m, and I C m by construction. It remains to see m is indeed maximal, but this is clear: we
have k C R/m C (R/I)f/m’, where (R/I);/m’ is a finite extension of k, so R/m is forced to be a field.

It’s then clear that A is jacobson by the correspondence of ideals between A = R/J and R. m]

Lemma 14. Let A, B be a jacobson rings with ¢ : A — B of finite type. If m is a maximal ideal of B, then
¢~1(m) < A is maximal.

Proof. Write B = A[xo, ..., x,]/I and consider ¢ to be the inclusion. Then ¢~!(m) = mN A =: m’. The
rings B/m and A/m’ are jacobson again by correspondence, and B/m is a finitely generated A/m’-algebra
via the map induced by ¢. Now A/m’ is clearly a domain, and we can choose an f # 0 such that the
localisation (A/m’)y is a field by [Stacks, 00FY]. But then (0) is the only maximal ideal of (A/m’), so it’s
the only maximal ideal of A/m’” as well by [Stacks, 00G6]. m|

Now consider the subcategory J < Aff of jacobson affine schemes with morphisms Spec A — Spec B
being morphisms of affine schemes of finite type, that is, the corresponding ring homomorphism (via 6)
B — A s of finite type. Consider another category U of ultra affine schemes; the objects are ringed spaces
(Spm A, Ospm a) where A is jacobson and

(1) the topology of Spm A is induced as a subspace of Spec A; in particular the
D"(f) =D(f)NSpmA ={meSpmA: f ¢ m}

form a basis of this topology, and
(2) Ospm a is defined in a similar way as Ospec 4, that is, Ospm A(D™(f)) = S ~14 where

S={geA:D"(f)c D"(g)},
and the morphisms are again those of finite type (morphisms of ultra affine schemes are defined in an
analogous way as morphisms of affine schemes; in particular, due to 14, we can similarly require them to

be of the form (b o, q’g), induced by a ring homomorphism ¢).
Then
Theorem 15 ([EGA 1V:3, Proposition 10.9.6]). There is an equivalence of categories between J and U.

Proof. Clearly J is equivalent to the opposite category J"°P of jacobson rings with morphisms being ring
homomorphisms of finite type. We then show that the functor F : J"°P — U that takes a jacobson ring A

to (Spm A, Ospm 4) and takes a ring homomorphism ¢ of finite type to (b o, (}5 ) gives an equivalence of

categories.
First, we show that F is fully faithful, that is, the map between Hom sets

Homg/(B, A) — Homq;(Spm A, Spm B)
induced by F is bijective.
(1) It’s injective: we need to show that if ¢, 1) both induce (bcp, q’g), then ¢ = 1p. By definition, the

data of (bqb, (E) gives a ring map
-~ -1
¢p() : Ospm(SpmB) = B — A = Ospma ((bqb) (Spm B)) ,

which uniquely gives the ¢ that induces (%, (5 )

(2) It’s surjective: we need to show every (b o, (E ) is induced by some ¢, which is a tautology.

It remains to show that F is essentially surjective, which follows again by construction. m|
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