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Week 1, lecture 1

1. Introduction

Definition 1.0.1. A group is a pair (G, ◦) where G is a set and ◦ : G ×G → G is a binary operation
satisfying

(1) Associativity: (g ◦ h) ◦ k = g ◦ (h ◦ k) ∀g, h, k ∈ G,
(2) Identity: ∃ an element in G, denoted 1G, such that 1G ◦ g = g ◦ 1G = g ∀g ∈ G,
(3) Inverses: ∀g ∈ G, ∃ an element in G, denoted g−1, such that g ◦ g−1 = g−1 ◦ g = 1G.

Remark. Implicit in parts 1 and 2 of above definition are
(1) An identity element in an associative binary operation is unique, justifying the notation and the

‘the’ before ‘identity’
(2) Similarly, inverses are unique in an associative binary operation, so we say the inverse of g

The number of elements in a group (G, ◦) is called the order of G, denoted |G|.

Example 1.0.2. Let G = Z. Then
(1) If we define ◦ : G × G → G by g ◦ h = g + h for g, h ∈ Z then we know (G, ◦) is a group and

1G = 0, g−1 = −g ∀g ∈ G.
1
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(2) For the same set, if we define g ◦ h = g × h then (G, ◦) is not a group for lack of inverses for
g ∈ Z\{±1}.

Remark. (1) You may have been given a fourth axiom, closure, in previously seen definitions of a
group. The reason we omit that here is because it’s implied by definition of binary operation.

(2) If (G, ◦) is a group, ◦ is often called the group operation.
(3) Given clear context, we will streamline our notation and simply write G in place of (G, ◦) and gh

in place of g ◦ h.

Definition 1.0.3. Let G be a group.
(1) If g, h ∈ G : gh = hg then g and h commute.
(2) If g and h commute ∀g, h ∈ G then G is abelian.

Example 1.0.4. (Z,+) is abelian.

Exercise 1.0.5 (Commuting elements in groups). Let G be a group.
(1) Suppose g2 = 1G ∀g ∈ G. Show that G is abelian.

Proof. Note that this implies ∀g, h ∈ G, (gh)−1 = gh, but (gh)−1 = h−1g−1 = hg, so gh = hg. □

(2) Suppose g3 = 1G ∀g ∈ G. Show that hgh−1 and g commute ∀g, h ∈ G.

Proof. One has g2h = g−1h−2 = (h2g)−1 = h2gh2g ⇒ gh2g = hg2h ⇒ hgh2g = h2g2h. Now
consider (gh)−1, which equals h2g2 but also ghgh. Hence ghgh−1 = ghgh2 = h2g2h = hgh2g =
hgh−1g, as desired. □

Next, we are going to look at two infinite families of examples of groups: 1. Symmetric groups and 2.
Linear groups.

1.1. Symmetric group.

Definition 1.1.1. Let X be a set, and define

Sym(X) = {f : f : X → X is a bijection}

Define ◦ : Sym(X)× Sym(X) → Sym(X) to be the usual composition of functions. Then (Sym(X), ◦) is
a group, called the symmetric group on X. An element of Sym(X) is called a permutation.

Remark (Sanity check). (1) Associativity is clear by inheritance
(2) 1G = idX : x 7→ x
(3) For f ∈ Sym(X), x ∈ X, choose a unique yx ∈ X such that f(yx) = x. Define g : X → X by

g(x) = yx, then g is a inverse for f .

We introduce cycle notation as a more compact way of writing permutations down.
Week 1, lecture 2

Definition 1.1.2 (Cycle notation). Let X be a set.
(1) Let a1, . . . , an ∈ X be distinct. The permutation f = (a1, . . . , an) ∈ Sym(X) is defined to be

f(ai) = ai+1 for 1 ≤ i ≤ n− 1, f(an) = a1, and f(b) = b for b ̸∈ {a1, . . . , an}. We call f a cycle
of length n (or an n-cycle).

(2) Two cycles (a1, . . . , ar), (b1, . . . , bs) are disjoint if {a1, . . . , ar} ∩ {b1, . . . , bs} = ∅.
(3) The empty cycle, written (), is the identity map which is also 1Sym(X).

Remark (Important points about cycles). (1) Perhaps a tautology, but the empty cycle is thought
of as a cycle (of length 0).

(2) Recall that the group operation is composition of functions. So fg : X → X means do g first and
then f . e.g. X = {1, 2, 3, 4, 5}, so (3, 4, 1, 2)(4, 5) = (1, 2, 3, 4, 5).

(3) Cycle notation is not unique in the following sense: two distinct m-tuples of elements in a set X
can represent the same cycle, e.g. (1, 2, 3, 4, 5) = (3, 4, 5, 1, 2).

Theorem 1.1.3. Let X be a finite set. Then
(1) |Sym(X)| = |X|!,
(2) Every element F ∈ Sym(X) can be written as product of disjoint cycles. Moreover, the decom-

position is unique in the sense that if F = f1 · · · fr = g1 · · · gs where fi, gi are disjoint cycles of
length > 1, then r = s and {f1, . . . , fr} = {g1, . . . , gr}.
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Proof (nonexaminable). (1) Write X = {x1, . . . , xr} where n = |X| and define

X(n) := {(a1, . . . , an) : ai ∈ X, ai ̸= aj for i ̸= j}.

Define a bijection θ : Sym(X) → X(n) by θ(f) = (f(x1), . . . , f(xn)). for f ∈ Sym(X), observe
(a) θ is well-defined, since f is a bijection, so f(xi) ̸= f(xj) for i ̸= j.
(b) In the same way, θ is injective. Indeed, if θ(f) = θ(g) then f(xi) = g(xi) ∀i by definition of

θ, so f = g.
(c) If (a1, . . . , an) ∈ X(n), then define f : X → X by f(xi) = ai for 1 ≤ i ≤ n. Clearly,

f ∈ Sym(X) and θ(f) = (a1, . . . , an), so θ is surjective.
It follows that |Sym(X)| = |X(n)| = n!.

(2) Let f ∈ Sym(X). If f = idX then f = () so it’s a cycle. Now suppose f is not idX . Let
Y = {x ∈ X : f(x) ̸= x}. Note that since |Sym(X)| is finite by 1., ∃n ∈ N such that fn = idX .

In particular, if we fix a1 ∈ Y , then we may define m1 := min{m ∈ N : fm(a1) = a1} since
the set is nonempty. Now, for 2 ≤ i ≤ m1, define ai := f(ai−1). If Y = {a1, . . . , am1

}, then by
definition of cycle, one has f = (a1, . . . , am).

Now suppose Y \{a1, . . . , am1
} ̸= ∅. Choose am1+1 ∈ Y \{a1, . . . , am1

}, and define m2 :=
min{m ∈ N : fm(am1+1) = am1+1}. For m1 + 2 ≤ i ≤ m2, again define ai := f(ai−1), then if
Y = {a1, . . . , am1 , am1+1, . . . , am2}, one has f = (a1, . . . , am)(am+1, . . . , am2). If not, we continue
inductively. Since X is finite, this must terminate, and when it does f will be a product of disjoint
cycles. The uniqueness follows from the algorithm immediately.

□

1.2. Linear group.

Definition 1.2.1. F is a field and n ∈ N. We define

GLn(F ) := {A : A an invertible n× n matrix over F},

a group with matrix multiplication as operation. This is called general linear group of dimension n over F .

Week 1, lecture 3

Remark (Useful things from Algebra I, II for studying general linear groups). (1) Each field F has
an additive and multiplicative identity 0F and 1F . Given clear context, they will be denoted
simply 0 and 1 respectively.

(2) An n × n matrix A over F is invertible iff detA ̸= 0 iff rows (or columns) of A are linearly
independent.

(3) If F is a finite field, then |F | = pf for some prime p and f ∈ N. Moreover, for each prime p and
each f ∈ N, ∃! a field (up to isomorphism) F : |F | = pf . p is called the characteristic of F , and
satisfies that pα = 0 ∀α ∈ F .

(4) If F is a field then F× := F\{0} is a group with multiplication as group operation inherited from
F .

Exercise 1.2.2. (1) Let X be a set. Show that Sym(X) is abelian iff |X| ≤ 2.
(2) Let F be a field. Show that GLn(F ) is abelian iff n = 1.

Theorem 1.2.3. Let F be a finite field with |F | = q. Then |GLn(F )| = q(
n
2)

n∏
i=1

(qi − 1).

Proof (nonexaminable). See sheet 1. □

1.3. Order of elements.

Definition 1.3.1. The order of g ∈ G, denoted |g|, is defined |g| := min{n ∈ N : gn = 1G}. If the set is
∅ then |g| := ∞.

Example 1.3.2. (1) Let X be a set and let f = (a1, . . . , am) ∈ Sym(X). Then |f | = m.
(2) Let F be a finite field of order pf where p prime, G = GL2(F ), and α, β ∈ F×. Observe that(

1 α
0 1

)(
1 β
0 1

)
=

(
1 α+ β
0 1.

)
So if g =

(
1 α
0 1

)
then gn =

(
1 nα
0 1

)
, so |g| | p (we’ll see later about this implication), so

|g| = p.
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Also,

gn =

(
α 0
0 β

)n

=

(
αn 0
0 βn.

)
So |g| = lcm(m, k) where m = |α| and k = |β| as elements of F×.

Remark. (1) For g ∈ G, (gn)−1 =
(
g−1

)n, so we write g−n :=
(
g−1

)n. In particular,
∣∣g−1

∣∣ = |g|.
(2) If g ∈ G, n = |g| and n | l, then gl = 1.

Lemma 1.3.3. Let a, b ∈ G of finite order. Then
(1) If l ∈ N, then al = 1 iff |a| | l.

(2) Let m ∈ N, then |am| = |a|
gcd(|a|,m)

.

(3) If a, b commute then |ab| | lcm(|a|, |b|).
(4) If a, b commute and ai = bj ∀i, j ∈ N only when they are both 1 (i.e. ⟨a⟩ ∩ ⟨b⟩ = {1}) then

|ab| = lcm(|a|, |b|).

Proof. (1) ⇐ is mentioned. ⇒: suppose al = 1. By Euclidean division, we can write l = q|a|+ r for
some r ∈ [0, |a|). Then 1 = al = aq|a|+r = ar, which contradicts minimality of |a|.

(2) Suppose first that m | |a|. Then one can write |a| = ms, so aml = 1 ⇔ |a| | ml by 1 ⇔ |a|
m

| l.

Hence the least positive integer l : aml = 1 is
|a|
m

.

Now let k = gcd(|a|,m). We write m = ks, then am
|a|
k = a|a|s = 1, and by 1 one has |am| | |a|

k .
To complete the proof it suffices to show that |a|

k ≤ |am|.
Week 2, lecture 1

By Bézout’s lemma, ∃s, t ∈ Z : k = s|a| + tm, so ak = as|a|+tm = (a|a|)satm = atm. Then
atm|am| = ((am)|a

m|))t = 1t = 1. This implies |atm| | am by 1. So |a|
k = |ak| = |atm| | |am|.

(3) Let l := lcm(|a|, |b|). Then (ab)l = albl = 1× 1 = 1, so by 1. |ab| | l.
(4) Let k := |ab|. Then k | l, but also, 1 = (ab)k = akbk so ak =

(
b−1

)k and by assumption both sides
are 1. So |a|, |b| | k, so l | k, hence k = l.

□

Exercise 1.3.4. (1) Let h, g ∈ G. Show that
∣∣hgh−1

∣∣ = |g|.
(2) Let l,m, n > 2 ∈ N. Show that ∃G with a, b ∈ G : |a| = l, |b| = m, |ab| = n. Also:

(a) Show that G can be finite.
(b) Show that one can replace l,m, n > 2 by l,m, n > 1.
Key hint: A 2× 2 matrix over C with distinct eigenvalues is diagonalisable. Now exploit result of
1st exercise.

1.4. Subgroup and coset.

Definition 1.4.1. A nonempty H ⊆ G is a subgroup of G, denoted H ≤ G, if
(1) 1G ∈ H
(2) h ∈ H ⇒ h−1 ∈ H
(3) h1, h2 ∈ H ⇒ h1h2 ∈ H

Definition 1.4.2. For a group G and g ∈ G, define ⟨g⟩ := {gn : n ∈ Z} which is called the cyclic subgroup
of G generated by g. If G = ⟨g⟩ then G is cyclic and g is a generator for G.

Lemma 1.4.3. H ⊆ G where H nonempty. H ≤ G ⇔ h1, h2 ∈ H ⇒ h1h
−1
2 ∈ H

Proof. ⇒ h1, h2 ∈ H ⇒ h−1
2 ∈ H ⇒ h1h

−1
2 ∈ H.

⇐ (1) H ̸= ∅ ⇒ h ∈ H ⇒ hh−1 ∈ H ⇒ 1G ∈ H
(2) h ∈ H ⇒ 1Gh

−1 = h−1 ∈ H
(3) h1, h2 ∈ H ⇒ h−1

2 ∈ H ⇒ h1(h
−1
2 )−1h1h2 ∈ H

□

Example 1.4.4. Let G = GL2(F ) and

H =

{(
α 0
0 β

)
: α, β ∈ F×

}
⊆ G. sometimes called diagonal subgroup
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We want to show this is indeed a subgroup. Let hi =

(
αi 0
0 βi

)
∈ H where i = 1, 2. Then

h1h2 =

(
α1 0
0 β2

)(
α−1
2 0
0 β−1

2

)
=

(
α1α

−1
2 0

0 β1β
−1
2

)
∈ H.

Definition 1.4.5. Let A ⊆ G be nonempty. The subgroup of G generated by A, denoted ⟨A⟩, is

{aε11 · · · aεmm : m ∈ N, ai ∈ A, εi ∈ {±1}}.

Notation. If A = {g1, . . . , gt} then we often write ⟨A⟩ as ⟨g1, . . . , gt⟩.

Week 2, lecture 2

Exercise 1.4.6. Let G be a group and A ⊆ nonempty.
(1) Use Lemma 1.4.3 to show that ⟨A⟩ is indeed a subgroup of G.
(2) Write A = {g1, . . . , gs} and suppose gigj = gjgi ∀i, j = 1, . . . , s. Show that | ⟨A⟩ | ≤

∏s
i=1 |gi|.

(3) Suppose gp = 1 ∀g ∈ G and G = ⟨x, y⟩ for some x, y ∈ G.
(a) Show that if p = 2, |G| ≤ 4.
(b) Show that if p = 3, |G| ≤ 34.
(c) Fields-medal-worth: If p = 5, is G finite?

Definition 1.4.7. The left coset of H ≤ G with respect to g ∈ G is the set gH := {gh : h ∈ H}. The
right coset is defined similarly.

gH is not a subgroup unless g ∈ H since in general the identity is not there.

Lemma 1.4.8. Let H ≤ G and g, k ∈ G. The following are equivalent:
(1) k ∈ gH
(2) kH = gH
(3) g−1k ∈ H

Proof. First note that if h ∈ H then hH = H by virtue of the fact H ≤ G.
Now k ∈ gH ⇒ k = gh for some h ∈ H ⇒ kH = ghH = gH, so 1 implies 2. The other two implications

are almost identical. □

Lemma 1.4.9. Let H ≤ G. For g1, g2 ∈ G, say that g1 ∼H g2 ⇔ g1H = g2H. Then ∼H is an equivalence
relation.

Proof. The three conditions reflexivity, symmetry and transitivity follow immediately from definition. □

Corollary 1.4.10. Let H ≤ G.
(1) If g1, g2 ∈ G, then either g1H = g2H or g1H ∩ g2H = ∅.
(2) The set {gH : g ∈ G} of left cosets is a partition of G, i.e. if giH for i ∈ I are distinct left cosets

of H in G then
G =

⊔
i∈I

giH.

Proof. {gH : g ∈ G} is precisely the set of equivalence classes under ∼H , so the results follow immediately.
□

Theorem 1.4.11 (Lagrange’s). Let G be a finite group and H ≤ G. Then |H| | |G|.

Proof. Let g1H, . . . , gtH be distinct left cosets of H in G. By Corollary 1.4.10,

|G| =

∣∣∣∣∣
t⊔

i=1

giH

∣∣∣∣∣ =
t∑

i=1

|giH|,

and one also has |gH| = |H| ∀g ∈ G since gH → H defined by gh 7→ h is a bijection. Hence |G| = t|H|. □

Definition 1.4.12. (1) As in the context of above, we write G/H := {gH : g ∈ G}.
(2) |G/H| is called index of H in G, denoted |G : H|. By Lagrange’s theorem if G is finite then

|G : H| = |G|
|H| .

Corollary 1.4.13. If G is finite and g ∈ G, then |g| | |G|.

Proof. This follows from the fact | ⟨g⟩ | = |g| and Lagrange’s theorem. □
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1.5. Normal subgroup and quotient group. In general G/H is not a group, which is the motivation
of this section.

Lemma 1.5.1. Let H ≤ G, g ∈ G. Then gHg−1 =
{
ghg−1 : h ∈ H

}
≤ G.

Proof. We use Lemma 1.4.3. Clearly gHg−1 ̸= ∅ since 1G ∈ gHg−1. Now let x = gh1g
−1, y = gh2g

−1

where h1, h2 ∈ H. Note that h1h2 ∈ H since H ≤ G. Then y−1 = gh−1
2 g−1 so

xy−1 = gh1g
−1gh−1

2 g−1 = gh1h
−1
2 g−1 ∈ gHg−1.

□

Definition 1.5.2. (1) H ≤ G is normal in G if gHg−1 = H ∀g ∈ G, denoted N ⊴G.
(2) The normaliser of H ≤ G is defined as

NG(H) := {g ∈ G : gHg−1 = H}.

Exercise 1.5.3. (1) If H ≤ G, show that NG(H) ≤ G.
(2) {1G}, G are always normal.

Week 2, lecture 3

Definition 1.5.4. G is simple if {1G} and G are the only normal subgroups of G.

Example 1.5.5. • Z/pZ for any prime p (by Lagrange’s)
• An for n ≥ 5

Notation. AB := {ab : a ∈ A, b ∈ B} where A,B ⊆ G. It’s a subset but not a subgroup of G in general,
even if A,B ≤ G.

Lemma 1.5.6. Let N ⊴G and g, h ∈ G. Then (gN)(hN) = ghN .

Proof. ⊆: Let x = gn1 ∈ gN, y = hn2 ∈ hN where n1,2 ∈ N . Then

xy = gn1hn2 = ghh−1n1hn2 ∈ ghN

since h−1n1h ∈ N by definition of a normal subgroup.
⊇: Let x = ghn ∈ ghN where n ∈ N . Then

x = (g1G)(hn) ∈ (gN)(hN).

□

Definition 1.5.7. Let N ⊴G.
(1) The natural binary operation on G/N is ◦ : G/N ×G/N → G/N given by (gN) ◦ (hN) = ghN .
(2) (G/N, ◦) is a group, called the quotient of G by N .

Checking this is indeed a group is left as an exercise.

1.6. Homomorphism.

Definition 1.6.1. Let G,H be groups.
(1) A map θ : G → H is a homomorphism if θ(g1g2) = θ(g1)θ(g2) ∀g1, g2 ∈ G.
(2) A bijective homomorphism is an isomorphism. If for G,H, ∃θ : G → H an isomorphism, then G

and H are isomorphic, denoted G ∼= H.
(3) Let θ : G → H be a homomorphism. The kernel of θ, denoted ker θ, is defined to be {g ∈

G : θ(g) = 1H}, which is a subgroup of G. The image of θ, denoted im θ, is defined to be
{θ(g) : g ∈ G}.

Example 1.6.2. Let F be a field, G = GLn(F ) and H = F×. Then detG → H is a (surjective)
homomorphism, since detAB = detA detB ∀A,B ∈ GLn(F ). Also

ker det = {A ∈ GLn(F ) : detA = 1F } =: SLn(F ).

Theorem 1.6.3 (1st isomorphism theorem). Let θ : G → H be an homomorphism. Then
(1) ker θ ⊴G.
(2) im θ ≤ H.
(3) G/ ker θ ∼= im θ.

Theorem 1.6.4 (2nd isomorphism theorem). Let H ≤ G and N ⊴G. Then
(1) HN = NH ≤ G.
(2) H ∩N ⊴H.
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(3) HN/N ∼= H/(H ∩N).

Theorem 1.6.5 (3rd isomorphism theorem). Let N,K ⊴G : N ≤ K. Then

K/N ⊴G/N and (G/N)/(K/N) ∼= G/K.

Theorem 1.6.6 (Correspondence (or 4th isomorphism) theorem). Let N ⊴G. Then the map

f : {J : N ≤ J ≤ G} → {X : X ≤ G/N}

given by
J 7→ J/N

is a bijection.

Proof. Let A := {J : N ≤ J ≤ G} and B := {X : X ≤ G/N}. Clearly J/N ≤ G/N .
Suppose J1,2 ∈ A and f(J1) = f(J2), and let x ∈ J1. Then

xN ∈ f(J1) = f(J2) = J2/N,

so xN = yN for some y ∈ J2. Since x ∈ xN , x = yn ∈ J2 for some n ∈ N . It follows that J1 ⊆ J2, and
symmetrically J2 ⊆ J1. Hence f is injective.

Let X ∈ B and set Y = {y ∈ G : yN ∈ X}. One can see that Y ≤ G since y1,2N ∈ X ⇒
(y1N)(y2N)−1 ∈ X ⇒ y1y

−1
2 N ∈ X, so y1y

−1
2 ∈ Y by definition, hence Y ≤ G. Since N ≤ Y

(nN = N = 1G/N ∈ X ∀n ∈ N) one has y ∈ A. Since f(Y ) = X, f is surjective. □

Week 3, lecture 1

2. Group action

2.1. Permutation group.

Definition 2.1.1. Let X be a set. G ≤ Sym(X) is called a permutation group on X.

Definition 2.1.2. (1) Let g ∈ Sym(X). The support of g is defined

supp(g) := {x ∈ X : g(x) ̸= x} ⊆ X.

(2) Let G ≤ Sym(X). The support of G is defined

supp(G) := {x ∈ X : g(x) ̸= x for some g ∈ G} ⊆ X.

Example 2.1.3. (1) supp(Sym(X)) = X.
(2) supp({1G}) = ∅.
(3) X = {1, 2, 3, 4, 5, 6} and g = (1, 5, 6). Then supp(g) = {1, 5, 6}.
(4) X = {1, 2, 3, 4, 5} and g = (1, 2)(3, 5). Then supp(g) = {1, 2, 3, 5}.

Remark. As the above examples show, one can read off the support of g ∈ Sym(X) from its decomposition
as a product of disjoint cycles. More precisely, if f ∈ Sym(X), f = f1 . . . fm is such decomposition where
fi =

(
ai1 , . . . , aiti

)
. Then

supp(f) = {aij : 1 ≤ i ≤ m, 1 ≤ j ≤ ti}.

Exercise 2.1.4. Let H,G ≤ Sym(X).
(1) Show that H ≤ G ⇒ supp(H) ⊆ supp(G).
(2) Deduce that supp(H) ∩ supp(G) ⇒ H ∩G = {1Sym(X)}.
(3) Is the converse of above true?

No, counterexample: X = {1, 2, 3}, G = ⟨(1, 2)⟩ , H = ⟨(2, 3)⟩.
(4) What if gh = hg ∀g ∈ G, h ∈ H?

Theorem 2.1.5. (1) Disjoint cycles commute.
(2) Let f ∈ Sym(X) and f = f1 . . . fm as a product of disjoint cycles fi. If m = 1 then |f | is length

of f1. If m ≥ 2 then |f | = lcm(|f1|, . . . , |fm|).
(3) If f = (a1, . . . , fr) ∈ Sym(X) is a cycle and g ∈ Sym(X), then gf := gfg−1 = (g(a1), . . . , g(ar)).

Proof (nonexaminable). (1) Let f = (a1, . . . , ar), g = (b1, . . . , bs) be disjoint cycles. One needs to
prove (f ◦ g)(x) = (g ◦ f)(x) ∀x ∈ X.

Suppose x ∈ {a1, . . . , ar}, which implies x ̸= bi by assumption. So g(x) = x by definition of
cycles, hence f(g(x)) = f(x). Also, again by definition, f(x) ∈ {a1, . . . , ar}, so f(x) ̸= bi, hence
g(f(x)) = f(x). The argument for case x /∈ {a1, . . . , ar} is symmetric.
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(2) The case m = 1 is seen before in section 1.3. We prove the claim by induction on m. Suppose
m ≥ 2 and all precedents are true. Let g = f1 . . . fm−1. We now need three things to finish the
proof:
(a) Write fi = (ai1 , . . . , aiti ). Then supp(g) = {aij : 1 ≤ i ≤ m− 1, 1 ≤ j ≤ ti} and supp(fm) =

{amj : 1 ≤ j ≤ tm}. By assumption supp(g) ∩ supp(fm) = ∅, so ⟨g⟩ ∩ ⟨fm⟩ = {1Sym(X)} by
exercise above.

(b) g and fm commute by 1.
(c) |g| = lcm(|f1|, . . . , |fm−1|) by inductive hypothesis.

By Lemma 1.3.3.4 one has the desired.
(3) Let bi := g(ai) and observe that (gfg−1)(bi) = gfg−1(g(ai)) = g(f(ai)) = g(ai+1) = bi+1. Now

let x ∈ X\{b1, . . . , bm}. Then g−1(x) ∈ X\{g−1(b1), . . . , g
−1(bm)} since g is a bijection, i.e.

g−1(x) ∈ X\{a1, . . . , am}, so f(g−1(x)) = g−1(x), and gfg−1(x) = g(g−1(x)) = x.
□

Week 3, lecture 2
Recall that a subgroup of G generated by a nonempty A ⊆ G is defined to be

⟨A⟩ := {aε11 · · · aεmm : m ∈ N, εi ∈ {±1}, ai ∈ A} .

Exercise 2.1.6. Let A ⊆ G be nonempty.
(1) Show that

⟨A⟩ =
⋂

A⊆H≤G

H.

In particular, if H ≤ G and A ⊆ H then ⟨A⟩ ≤ H.
(2) Recall that given H ≤ G, NG(H) := {g ∈ G : gHg−1 = H}. Suppose g ∈ G and gag−1 ∈

⟨A⟩ ∀a ∈ A. Show that g ∈ NG(⟨A⟩). (One only needs to check element in generating set instead
of the whole subgroup for normaliser.)

Definition 2.1.7. Let n ∈ N, n ≥ 3 and set X := {1, . . . , n}. Define σ, τ ∈ Sym(X) by σ := (1, 2, . . . , n)

and τ =
∏⌊n/2⌋

i=1 (i, n − i + 1) = (1, n)(2, n − 1) · · · . The dihedral group of order 2n is the permutation
group on X defined by D2n := ⟨σ, τ⟩ .

This is the rigorous (algebraic) definition of D2n, but it can also be thought of group of symmetries of
a regular n-gon.

Example 2.1.8. (1) n = 8, σ = (1, 2, 3, 4, 5, 6, 7, 8), τ = (1, 8)(2, 7)(3, 6)(4, 5).
(2) n = 7, σ = (1, 2, 3, 4, 5, 6, 7), τ = (1, 7)(2, 6)(3, 5).

Theorem 2.1.9. Let n ∈ N, n ≥ 3.
(1) |D2n| = 2n.
(2) N := ⟨σ⟩⊴D2n and |N | = n.

Proof. (1) See sheet 2.
(2) First note that τστ−1 = (τ(1), . . . , τ(n)) = (n, n − 1, . . . , 1) = σ−1 by Theorem 2.1.5.3 and

definition of τ . Also clearly σσσ−1 = σ. Now if A := {σ} then we have shown τσ,σ σ ∈ ⟨A⟩, so
by Exercise 2.1.6.2, τ, σ ∈ ND2n

(⟨A⟩). Hence ⟨{τ, σ}⟩ = D2n ⊆ ND2n
(⟨A⟩), i.e. ⟨A⟩⊴D2n. Also

|N | = | ⟨σ⟩ | = |σ| = n.
□

Definition 2.1.10. Let X be a finite set.
(1) Let f ∈ Sym(X) and write f = f1 · · · fm as product of disjoint cycles. f is even if the number of

cycles of even length in {f1, . . . , fm} is even. Otherwise f is odd.
(2) The alternating group on X, denoted Alt(X), is defined {f : f ∈ Sym(X) even}.

Example 2.1.11. (1, 2, 3, 4) ∈ S4 is odd, (1, 2)(3, 4, 5) ∈ S5 is odd, (1, 2)(3, 4, 5, 6) ∈ S6 is even.

Proposition 2.1.12. Alt(X) ≤ Sym(X) and [Sym(X) : Alt(X)] = 2, i.e. |Alt(X)| = |X|!
2 .

Proof. See sheet 2. □

Proposition 2.1.13. If X,Y are finite sets with |X| = |Y |, then Sym(X) ∼= Sym(Y ).

Proof. Let β : X → Y be a bijection. Define θ : Sym(X) → Sym(Y ) by f 7→ βfβ−1. It’s then clear that
θ is an isomorphism. □
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Week 3, lecture 3
Recall that if G = ⟨B⟩ , H = ⟨A⟩, then H ⊴G ⇔ bab−1 ∈ H ∀a ∈ A, b ∈ B.

2.2. Group action.

Definition 2.2.1. Let G be a group and X a set. An action of G on X is a map · : G×X → X such that
(1) 1G · x = x ∀x ∈ X
(2) (gh) · x = g · (h · x) ∀g, h ∈ G, x ∈ X

We say G acts on X and X is a a G-set.

Example 2.2.2. (1) The action of G on itself by left multiplication: let X := G and define · :
G×X → X by g · x := gx, g ∈ G, x ∈ X. Note that by definition of a group,
(a) 1G · x = 1Gx = x ∀x ∈ X,
(b) (gh) · x = (gh)x = g(hx) = g · (h · x) ∀g, h ∈ G, x ∈ X.

(2) The action of G on itself by conjugation: again let X := G. Define · : G×X → X by g ·x := gxg−1.
Note that
(a) 1G · x = 1Gx1

−1
G = x ∀x ∈ X,

(b) (gh) · x = (gh)x(gh)−1 = ghxh−1g−1 = g ·
(
hxh−1

)
= g · (h · x).

(3) The action of G on the set of left cosets of H ≤ G: let X := G/H = {gH : g ∈ G} and define
· : G×X → X by g · kH = gkH. To see it’s indeed an action is similar to 1.

Proposition 2.2.3. Let G be a group acting on a set X. Define ϕ : G → Sym(X) by ϕ(g)(x) := g · x.
Then ϕ is a homomorphism. (Then G/ kerϕ ∼= H where H ≤ Sym(X)).

Proof. Let g, h ∈ G. ϕ is indeed a bijection by definition of an action. It suffices to show ϕ(gh) = ϕ(g)◦ϕ(h).
Let x ∈ X, then

ϕ(gh)(x) = (gh) · x = g · (h · x) = ϕ(g)(ϕ(h)(x)) = (ϕ(g) ◦ ϕ(h))x.
□

Definition 2.2.4. Let ϕ be the same map as above.
(1) The kernel of action of G on X, denoted ker(G,X, ·), is defined to be

ker(G,X, ·) = kerϕ = {g ∈ G : g · x = x ∀x ∈ X}⊴G.

(2) The image of the action, denoted im(G,X, ·), is defined to be imϕ ≤ Sym(X).
(3) The action is trivial if ker(G,X, ·) = G and faithful if ker(G,X, ·) = {1G}.

Example 2.2.5 (The same ones from 2.2.2). (1) ker(G,X, ·) = {1G}, a faithful action.
(2) ker(G,X, ·) = {g ∈ G : gxg−1 = x ∀x ∈ X} = Z(G). The action is trivial iff G is abelian.
(3) Observe that the action is trivial ⇔ gxH = xH ∀g, x ∈ G ⇔ H = G, i.e. it’s nontrivial as long as

H is proper. This is useful: let G be a nonabelian finite simple group. We claim G cannot have a
subgroup of index 3 (the case that index is 2 is obvious since if that’s true then it has a nontrivial
proper normal subgroup, so not simple).

Proof. Suppose |G : H| = 3. G acts on X := G/H and by the above H is proper, so K :=
ker(G,X, ·) ⊴ G is proper. But G is simple so K = {1G} and one can then say G ∼= G/K ∼=
some subgroup of S3. Since it’s nonabelian it must be the whole group. But S3 is not simple, a
contradiction. □

Week 4, lecture 1

Remark. We saw last time that Proposition 2.2.3 is particularly useful when G is a finite simple group
and H is a subgroup of G such that |G : H| = n, in that it implies that G is isomorphic to a subgroup of
Sn. This leads to the following more general result.

Proposition 2.2.6. Let G be a group acting faithfully on a set X. Then G is isomorphic to a subgroup
of Sym(X).

Proof. This follows immediately from the definition of faithful and the 1st isomorphism theorem. □

Definition 2.2.7. Let G be a group acting on a set X and x ∈ X.
(1) The orbit of x is orbG(x) := {g · x : g ∈ G}.
(2) The stabiliser of x is stabG(x) := {g ∈ G : g · x = x}.

Proposition 2.2.8. (1) stabG(x) ≤ G.
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(2) ker(G,X, ·) =
⋂
x∈X

stabG(x).

Proof. See sheet 2 Q8. □

Example 2.2.9 (From 2.2.2.2). Fix x ∈ X = G. One has

orbG(x) = {gxg−1 : g ∈ G},
called the conjugacy class of x in G, sometimes denoted Gx. Also

stabG(x) = {g ∈ G : gxg−1 = x},
called the centraliser of x in G, sometimes denoted CG(x).

Theorem 2.2.10 (Orbit–stabiliser). Let G be a finite group acting on a set X and x ∈ X. Then

|G : stabG(x)| = |orbG(x)|,
or alternatively

|G| = |stabG(x)||orbG(x)|.

Proof. Let S = stabG(x). Recall G/S = {gS : g ∈ G} and |G : S| = |G/S|. Define

f : G/S → orbG(x) by gS 7→ g · x.
It suffices to show f is bijective.

(1) f is well-defined and injective: gS = kS ⇔ k−1g ∈ S ⇔ k−1g · x = x ⇔ g · x = k · x ⇔ f(gS) =
f(kS);

(2) For g · x ∈ orbG(x) then f(gS) = g · x, so f is surjective.
□

Corollary 2.2.11. (1) For x, y ∈ X, either orbG(x) = orbG(y) or orbG(x) ∩ orbG(y) = ∅.
(2) {orbG(x) : x ∈ X} is a partition of X.
(3) |orbG(x)| divides |G|.

Proof. 1, 2. Define a relation on X x ∼ y if y = g · x. It follows from the definition of an action that ∼
is an equivalence relation and the equivalence classes are {orbG(x) : x ∈ X}.

3. Immediate from the theorem.
□

Theorem 2.2.12 (Cayley’s). Let G be a finite group. Then G is isomorphic to a subgroup of Sym(X)
for some set X.

Proof. By Example 2.2.2.1, G acts on itself by left multiplication, and ker(G,X, ·) = {1G}, i.e. the action
is faithful. The result then follows from Proposition 2.2.6. □

Theorem 2.2.13. Let p be prime and G a group of order pn where n ∈ N+. Then |Z(G)| > 1.

Proof. Observe that

g ∈ Z(G) ⇔ gxg−1 = x ∀x ∈ G ⇔ xgx−1 = g ⇔ |orbG(g)| = 1.

Week 4, lecture 2

Let orbG(x1), . . . , orbG(xt) be the orbits of G in its action by conjugation on X = G (Example 2.2.2.2).
Assume WLOG that |orbG(xi)| = 1 for 1 ≤ i ≤ s and |orbG(xi)| > 1 for s < i ≤ t. By the observation
above, one then has Z(G) = {x1, . . . , xs} and in particular, |Z(G)| = s. If s < i ≤ t, then |orbG(x)| = pai

for some ai ∈ N by Corollary 2.2.11.3. Now, by Corollary 2.2.11.2,

|G| = |X| =
t∑

i=1

|orbG(xi)| = s+

t∑
i=s+1

pai = pn,

so |Z(G)| = s ≡ 0mod p, hence |Z(G)| ̸= 1. □

Remark. Many groups we shall see in the course will have a trivial centre, e.g. Sn for n ≥ 3 and D2n for
n ≥ 3. Also, a nonabelian finite simple group is not of order pn.

Corollary 2.2.14. Let p be prime and G a group.
(1) |G| = p2 ⇒ G is abelian.
(2) |G| = p3 ⇒ either G is abelian or |Z(G)| = p.
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Proof. We need two facts:
(1) All groups of order p are cyclic (immediate from Lagrange).
(2) If G is nonabelian then G/Z(G) is not cyclic (see sheet 2 Q1).

It follows that if G is nonabelian then |G/Z(G)| ̸= p for a prime p. Now Theorem 2.2.13 implies
(1) |G| = p2 ⇒ |Z(G)| = p2 ⇒ Z(G) = G ⇒ G is abelian.
(2) |G| = p3 ⇒ |Z(G)| = p or p3 and the desired result is clear.

□

Theorem 2.2.15 (Cauchy’s). Let G be a finite group and p a prime divisor of |G|. Then G has an
element of order p. Furthermore, number of elements of order p is congruent to −1mod p.

Proof. Define
X := {(g1, . . . , gp) ∈ Gp : g1 · · · gr = 1G}.

Note that
x = (g1, . . . , gp) ∈ X ⇒ 1G = g1 · · · gp

⇒ g−1
i · · · g−1

1 1Gg1 · · · gi = g−1
i · · · g−1

1 g1 · · · gpg1 · · · gi
⇒ 1G = gi+1 · · · gpg1 · · · gi
⇒ (gi+1, . . . , gp, g1, . . . , gi) ∈ X.

Now define
C := ⟨σ⟩ ≤ Sp where σ = (1, 2, . . . , p)

and the action
· : C ×X → X by σi · (g1, . . . , gp) := (gi+1, . . . , gp, g1, . . . , gi).

(Check · is indeed an action.) Now
(1) If g ∈ G and gp = 1G then (g, . . . , g) ∈ X, and σi·(g, . . . , g) = (g, . . . , g) ∀i, i.e. |orbC((g, . . . , g))| =

1.
(2) We claim that the converse is true: if x satisfies |orbC(x)| = 1 then x = (g, . . . , g) for some

g ∈ G : gp = 1G. Indeed, say x = (g1, . . . , gp). It suffices to show g1 = gi ∀i. By the Orbit–
stabiliser theorem, |orbC(x)| = 1 implies stabC(x) = C, i.e. ∀i,

(g1, . . . , gp) = σi−1(g1, . . . , gp) = (gi, . . . , gp, g1, . . . , gi−1),

which gives the desired.
(3) Note that if (g1, . . . , gp) ∈ X then gp = (g1 · · · gp−1)

−1. We claim |X| = |G|p−1. Indeed, define
f : X → Gp−1 by (g1, . . . , gp) 7→ (g1, . . . , gp−1). It suffices to show that f is bijective since then
|X| = |Gp−1| = |G|p−1. To see f is injective, note that

f((g1, . . . , gp)) = f((h1, . . . , hp)) ⇒ gi = hi for 1 ≤ i ≤ p− 1

⇒ gp = (g1 · · · gp−1)
−1 = (h1 · · ·hp−1)

−1 = hp

⇒ (g1, . . . , gp) = (h1, . . . , hp).

To see f is surjective, note that for every (x1, . . . , xp−1) ∈ Gp−1 one can set xp := (x1 · · ·xp−1)
−1,

then (x1, . . . , xp) ∈ X and it satisfies f((x1, . . . , xp)) = (x1, . . . , xp−1).
By Corollary 2.2.11.3, all orbits not of size 1 have size p. Let s be number of distinct orbits of size 1, t be
number of distinct orbits of size p and r be number of elements of order p in G. By parts 1 and 2, s = 1+r
where 1 corresponds to the trivial element (1G, . . . , 1G). One can then write |G|p−1 = |X| = 1 + r + pt,
and since p | |G|, r ≡ −1mod p. In particular, r > 0. □

Week 4, lecture 3

Tool 2.2.16 (Analysing element orders in a finite group). Let Ep(G) := {x ∈ G : |x| = p} where p prime.
Then

(1) |Ep(G)| ≡ −1mod p (Cauchy’s theorem)
(2) |Ep(G)| ≥ |G : CG(x)| ∀x ∈ Ep(G) by 1.3.4.1 and the Orbit–stabiliser theorem.
(3) If r ̸= p is a prime and G has no element of order pr, then |CG(x)| is not divisible by r for

x ∈ Ep(G) by Lemma 1.3.3.4 and Cauchy’s theorem.

Example 2.2.17. Let G be of order 48 with no elements of order 6. We claim |E3(G)| ≥ 17.

Proof. Let x ∈ E3(G). Tool 2.2.16.3 implies |CG(x)| is not divisible by 2. Since |CG(x)| | 48, it must be
|CG(x)| = 3. Then by Tool 2.2.16.2 |E3(G)| ≥ 16, and since |E3(G)| ≡ −1mod 3, |E3(G)| ≥ 17. □
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Proposition 2.2.18. Let G,H,X be as in Example 2.2.2.3 and K ≤ G. Then |KH| = |K||H|
|K∩H| .

Proof. Since G acts on X and K ≤ G,K acts on X as well. Let x = H ∈ X. Then

stabK(x) = {k ∈ K : kH = H} = {k ∈ K : k ∈ H} = K ∩H,

and
|K : K ∩H| = |orbK(x)| = |{kH : k ∈ K}|.

On the other hand,

|KH| =

∣∣∣∣∣ ⋂
k∈K

kH

∣∣∣∣∣ = |{kH : k ∈ K}||H| = |K : K ∩H||H|.

□

Corollary 2.2.19. Let G,H,K as above. Then

|G : H ∩K| ≤ |G : H||G : K|.

Proof.
|H||K|
|H ∩K|

= |KH| ≤ |G| = |G|2

|G|
,

and rearranging gives the desired. □

2.3. Fixed point.

Definition 2.3.1. Let G be a group acting on a set X and g ∈ G.
(1) An element x ∈ X is a fixed point of g if g · x = x. The set of fixed points of g is denoted

fixX(g) := {x ∈ X : g · x = x}.
(2) g is fixed point free if fixX(g) = ∅.

Lemma 2.3.2 (not Burnside’s1). Let G be a finite group acting a finite set X. Then

|{orbG(x) : x ∈ X}| =: r =
1

|G|
∑
g∈G

| fixX(g)|.

Informally, the number of orbits = the average number of fixed points.

Proof. We will use Corollary 2.2.11.1 and 2. Let

Λ = {(g, x) : g ∈ G, x ∈ X, g · x = x}.

We count |Λ| in two different ways (double-counting method to show equality).
(1)

|Λ| =
∑
g∈G

| fixX(g)|.

(2)

|Λ| =
∑
x∈X

|{g ∈ G : g · x = x}| =
∑
x∈X

|stabG(x)| =
∑
x∈X

|G|
|orbG(x)|

=

r∑
i=1

∑
y∈orbG(xi)

|G|
|orbG(y)|

=

r∑
i=1

∑
y∈orbG(xi)

|G|
|orbG(xi)|

=

r∑
i=1

|orbG(xi)|
|G|

|orbG(xi)|
= r|G|

where orbG(x1), . . . , orbG(xr) are distinct orbits.
□

Corollary 2.3.3. Let G,X and r be as in above lemma. Suppose |X| > 1 and r = 1. Then G has a fixed
point free element.

1William Burnside (1852–1927) was known as a pioneer in the systematic study of finite groups and indeed stated and
proved this lemma, but later people found out this equality was known in as early as 1845 to Cauchy, so it’s a lemma that is
not Burnside’s.
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Proof. By definition one has |fixX(1G)| = |X|. Now

1 =
1

|G|
∑
g∈G

| fixX(g)| = 1

|G|

| fixX(1G)|+
∑
g ̸=1G

| fixX(g)|

 .

So if G doesn’t have any fixed point free element then |fixX(g)| ≥ 1 ∀g ∈ G and

1 ≥ 1

|G|
(|X|+ |G| − 1) >

|G|
|G|

= 1,

a contradiction. □

Week 5, lecture 1

3. Sylow theorems

Remark (Philosophy). In chapter 1, we saw Lagrange’s theorem. Question: does the converse hold? i.e.,
if l | |G|, does G necessarily have a subgroup of order l?

(1) A counterexample would be A4 with |A4| = 12, which does not have a subgroup of order 6 (use
Tool 2.2.16.3).

(2) In general, let G be a finite simple group of even order > 2. Then G has no subgroup of order
|G|/2.

Sylow theorems will prove that a partial converse holds by restricting l.

Notation. For the remainder of the chapter, we fix a finite group G and a prime divisor p of |G|. Also,
we write |G|p for the p-part of |G|, i.e. writing |G| = pnm where p ∤ m we have |G|p = pn.

Definition 3.0.1. Let H ≤ G.
(1) H is a p-subgroup of G if |H| is a power of p.
(2) H is a Sylow p-subgroup of G if |H| = |G|p.
(3) The set of all Sylow p-subgroups of G is denoted Sylp(G).

Example 3.0.2. (1) G = S4 has order 24. Then |G|2 = 23, |G|3 = 3. One has ⟨(1, 2, 3)⟩ ∈ Syl3(G)
and D8 = ⟨(1, 2, 3, 4), (1, 4)(2, 3)⟩ ∈ Syl2(G). Also ⟨(1, 2)⟩ is a 2-subgroup but not a Sylow
2-subgroup.

(2) G = Cn. Then for each divisor d or n, G has a unique subgroup of order d. In particular, if p | n,
then |Sylp(G)| = 1. See sheet 2 Q3.

(3) G = GL2(F ) where F is a field of order p. Then by Theorem 1.2.3, |G| = p(
2
2)
∏2

i=1(p
i − 1) =

p(p− 1)(p2 − 1). One has x =

(
1 1
0 1

)
∈ G with order p. Hence ⟨x⟩ ∈ Sylp(G). More generally,

|GLn(F )|p = p(
n
2) and U(n, F ) (the set of upper triangular matrices with 1 on the diagonal) is a

Sylow p-subgroup.

Theorem 3.0.3 (Sylow theorems). Let G be a finite group with p a prime divisor of |G|.
(1) (Existence) Sylp(G) ̸= ∅.
(2) (Conjugacy) All Sylow p-subgroups are conjugate in G.
(3) (Containment) Every p-subgroup of G is contained in a Sylow p-subgroup.
(4) (Number) |Sylp(G)| ≡ 1mod p.

3.1. Wielandt’s proof of Sylow theorems 1 & 4.

Lemma 3.1.1. Let p be prime and n,m ∈ N+ with gcd(m, p) = 1. Then

(1) p |
(
p

i

)
for 1 ≤ i ≤ p− 1.

(2)
(
pnm

pn

)
≡ mmod p.

Proof. (1) Fix 1 ≤ i ≤ p− 1. Then(
p

i

)
=

p!

i!(p− i)!
=

p(p− 1) · · · (p− i+ 1)

i(i− 1) · · · 1
.

Now let a := (p− 1) · · · (p− i+ 1), b = i!. Then(
p

i

)
=

pa

b
⇒ pa = b

(
p

i

)
⇒ p | b

(
p

i

)
,
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but clearly gcd(p, b) = 1, hence p |
(
p

i

)
.

(2) Let F := Z/pZ = {0, 1, . . . , p− 1} with usual addition and multiplication modulo p. Consider the
polynomial (1 + x)p ∈ F [x].

Week 5, lecture 2
By binomial theorem,

(1 + x)p =

p∑
i=1

(
p

i

)
xi = 1 + xp ∈ F [x].

Then
(1 + x)p

2

= ((1 + x)p)
p
= (1 + xp)

p
= 1 + xp2

.

Inductively,
(1 + x)p

n

= 1 + xpn

.

Even more generally,

(1 + x)p
nm =

(
(1 + x)p

n
)m

=
(
1 + xpn

)m

.

Binomial theorem then gives us the equality
pnm∑
i=0

(
pnm

i

)
xi =

m∑
i=0

(
m

i

)
xpni.

Comparing coefficients of xpni gives(
pnm

pni

)
=

(
m

i

)
and in particular for i = 1, (

pnm

pn

)
= m ∈ F.

Translating this back to Z one has the desired.
□

Proposition 3.1.2. Sylow theorem 4. In particular, Sylow theorem 1.

Proof. As usual, write |G| = pnm where p ∤ m and pn =: |G|p. Let X := {S ⊆ G : |S| = |G|p}. Define
·G×X → X by g · S := gS = {gs : s ∈ S}. This is indeed an action: see sheet 2 Q12. Let orbG(Si) be t
distinct orbits in X. By Corollary 2.2.11.2 and Lemma 3.1.1.2,(

pnm

pn

)
= |X| =

t∑
i=1

|orbG(si)| ≡ mmod p.

This means at least one |orbG(si)| is not divisible by p. WLOG, suppose p ∤ |orbG(Si)| for 1 ≤ i ≤ r and
p | |orbG(Si)| for r < i ≤ t. We claim:

(1) Fix i = 1, . . . , r and denote Si by S for convenience. Then ∃x ∈ G : stabG(xS) = xS and
in particular xS ∈ Sylp(G). Indeed, let s ∈ S and set x = s−1, T := xS. We want to show
stabG(T ) = T . First note that 1G = xx−1 = xs ∈ T . Hence g ∈ stabG(T ) ⇒ gT ⇒ g = g1G ∈
gT = T , so stabG(T ) ⊆ T . Also, T ∈ orbG(S), so orbG(T ) = orbG(S). Hence

p ∤ |orbG(T )| =
|G|

|stabG(T )|
=

pnm

|stabG(T )|
.

This implies pn | |stabG(T )| by Lagrange’s theorem. But by construction, |T | = pn, so it must be
that stabG(T ) = T .

(2) r = |Sylp(G)|. Indeed, for i = 1, . . . , r we can take Ti = xiSi ∈ orbG(Si) such that Ti = stabG(Ti)
by previous claim. Now define

f : {orbG(T1), . . . , orbG(Tr)} → Sylp(G)

orbG(Ti) 7→ Ti

f is well-defined since orbG(Ti) are distinct by construction and Ti ∈ Sylp(G) by first claim. Since
Ti are distinct, f is injective. Now let P ∈ Sylp(G). Then P ∈ X, and

stabG(P ) = {g ∈ G : gP = P} = P,
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so |orbG(P )| = m which by definition is not divisible by p. Hence for some i = 1, . . . , r, orbG(P ) =
orbG(Ti), so P ∈ orbG(Ti), i.e. P = gTi for some g ∈ G. But g = g1G ∈ gTi = P and since
g−1 ∈ P , Ti = g−1P = P . This proves f is surjective, hence bijective, hence the claim.

Therefore,

rm+ 0 =

r∑
i=1

|orbG(Ti)|+
t∑

i=r+1

|orbG(Si)| = |X| ≡ mmod p

and since gcd(m, p) = 1, we can do cancellation and have r ≡ 1mod p. □

Week 5, lecture 3

3.2. Proofs of Sylow theorems 2 & 3.

Remark (Easy but useful facts). Let G be finite and p a prime divisor of |G|. Then
(1) P ∈ Sylp(G), g ∈ G ⇒ gPg−1 ∈ Sylp(G).
(2) If |G| is a power of p then Sylp(G) = {G}.
(3) By definition, a p-subgroup Q of G is a Sylow p-subgroup iff p ∤ |G : Q|.

Proposition 3.2.1. Let G, p be as above and P ∈ Sylp(G), H ≤ G. Then ∃g ∈ G : H∩gPg−1 ∈ Sylp(H).

Proof. Let X = G/P = {gP : g ∈ G}. Then H acts on X by left multiplication (since G does) (Example
2.2.2.3). Consider the orbits and stabilisers. Fix xP ∈ X where x ∈ G, then

stabH(xP ) = {h ∈ H : hxP = xP} = {h ∈ H : x−1hxP = P}
= {h ∈ H : x−1hx ∈ P} = {h ∈ H : h ∈ xPx−1} = H ∩ xPx−1.

As usual, let orbH(x1P ), . . . , orbH(xtP ) be distinct orbits and write |G| = pnm where p ∤ m. We have

p ∤ m = |X| =
t∑

i=1

|orbH(xiP )| =
t∑

i=1

∣∣H :
(
H ∩ xiPx−1

i

)∣∣
so p ∤

∣∣H :
(
H ∩ xiPx−1

i

)∣∣ for some i. We claim g := xi satisfies the desired. Indeed, H ∩ gPg−1 ≤ gPg−1,
so by Lagrange’s theorem it’s a p-subgroup of H, hence by 3rd remark above it’s a Sylow p-subgroup of
H. □

Corollary 3.2.2. Sylow theorems 2 and 3.

Proof. 2. Let H,P ∈ Sylp(G). Then ∃g ∈ G : H ∩ gPg−1 ∈ Sylp(H) = {H} by previous proposition
and the 2nd remark above. So H = H ∩ gPg−1, in particular H ⊆ gPg−1, but by assumption
|H| = |gPg−1| so H = gPg−1.

3. Let H ≤ G be a p-subgroup and P ∈ Sylp(G). Then by exactly the same argument as above,
H ⊆ gPg−1 ∈ Sylp(G).

□

3.3. Consequences of Sylow theorems. Recall that if H ≤ G then H ≤ NG(H) = {g ∈ G : gHg−1 =
H}.

Corollary 3.3.1. Let G, p be as above and P ∈ Sylp(G).
(1) |Sylp(G)| = |G : NG(P )|.
(2) |Sylp(G)| | |G : P |.
(3) P ⊴G ⇔ |Sylp(G)| = 1.

Proof. Let G acts on X := Sylp(G) by conjugation (see sheet 2 Q15 that this is indeed an action).
(1) By Sylow theorem 2, Sylp(G) is explicitly {gPg−1 : g ∈ G} which by definition is orbG(P ). Now

stabG(P ) = {g ∈ G : gPg−1 = P} = NG(P ). The desired result then follows from Orbit–stabiliser
theorem.

(2) By Lagrange’s theorem and part 1, P ≤ NG(P ) ⇒ |P | | |NG(P )| ⇒ |G : NG(P )| | |G : P | ⇒
|Sylp(G)| | |G : P |.

(3) We have P ⊴G ⇔ {gPg−1 : g ∈ G} = {P} ⇔ Sylp(G) = {P} ⇔ |Sylp(G)| = 1.
□

Corollary 3.3.2. Let G, p be as above and

Fp(G) := {x ∈ G : x ̸= 1G, |x| = pn}.
Then
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(1)
Fp(G) =

⋃
P∈Sylp(G)

P\{1G}

(2) |Fp(G)| ≥ |G|p − 1 with equality iff |Sylp(G)| = 1 (i.e. there is a normal Sylow p-subgroup).
(3) If |G|p = p, then |Fp(G)| = |Sylp(G)|(p− 1).

Week 6, lecture 1

Proof. (1) Let
x ∈

⋃
P∈Sylp(G)

P\{1G}.

Then |x| = pn by Lagrange’s, and since x ̸= 1 one has x ∈ Fp(G). We haven’t used Sylow yet.
Now let x ∈ Fp(G). Then ⟨x⟩ is a p-subgroup since its order is |x|, so ⟨x⟩ is contained in a Sylow
p-subgroup. The desired is then clear.

2, 3. See sheet 3 Q10, 11 respectively.
□

Example 3.3.3 (Applying 3.3.1 and 3.3.2). (1) Prove that a group of order 30 is not simple.

Proof. Suppose |G| = 30 and G is simple. Note |G| = 2× 3× 5. By Corollary 3.3.1.2 and Sylow
theorem 4, |Syl5(G)| | 6 and |Syl5(G)| ≡ 1mod 5, i.e. |Syl5(G)| = 1 or 6. If it’s 1 then by Corollary
3.3.1.3 G is not simple with P normal, a contradiction; so |Syl5(G)| = 6. Similarly, |Syl3(G)| = 10.
Now Corollary 3.3.2.3 says |F5(G)| = 6× 4 = 24 and |F3(G)| = 10× 2 = 20, but we only have 30
elements. Hence G must be not simple. □

(2) Prove that a group of order 132 is not simple.

Proof. Suppose |G| = 132 = 11 × 22 × 3 and G is simple. Then similarly, |Syl11(G)| | 12
and |Syl11(G)| ≡ 1mod 11, i.e. |Syl11(G)| = 1 or 12. But again G has no normal subgroup,
so |Syl11(G)| = 12. Similarly, |Syl3(G)| = 4 or 22. Again, |F11(G)| = 12 × 10 = 120 and
|F3(G)| ≥ 4× 2 = 8. Now,

F2(G) ⊆ G\F11(G) ⊔ F3(G) ⊔ {1G},
so

|F2(G)| ≤ 132− 120− 8− 1 = 3.

Corollary 3.3.2.2 says |F2(G)| ≥ 22 − 1 = 3, so |F2(G)| = 3, hence there is a normal Sylow
p-subgroup, a contradiction with G being simple. □

3.4. 2 applications of Sylow theorems. In this section, we’ll look at a game with 2 versions.
• Version 1: Prove that a group G of order ∗ is not simple. The 3 strategies are

(1) Immediately apply Corollary 3.3.1.2 and Sylow theorem 4 to try to get a contradiction. We
usually start with the largest p.
e.g. ∗ = 20 = 22 × 5. Then |Syl5(G)| = 1, an immediate contradiction.

(2) The Fp(G)-strategy: for each p such that |G|p = p, use Corollary 3.3.2.3 to get a lower bound
on |Fp(G)|. Since

|G| <
∑
p||G|

|Fp(G)|,

we either get an immediate contradiction or we should further use Corollary 3.3.2.3 to get
one.
e.g. Example 3.3.3.

Week 6, lecture 2
(3) The homomorphism strategy: again begin by considering possibilities for |Sylp(G)|. Note

that if we choose a p such that |G : NG(P )| = |Sylp(G)| = m > 1 for P ∈ Sylp(G) (Corollary
3.3.1), then ker(G, Sylp(G), ·) ⊆ stabG(P ) = NG(P ) ⫋ G is proper. Since we assume (for
contradiction) that G is simple, ker(G, Sylp(G), ·) = {1G} because otherwise it would be a
nontrivial, proper normal subgroup. Hence by Proposition 2.2.6, G ∼= some subgroup of
Sym(X) and in particular |G| | m!. We would then get a contradiction hopefully.
e.g. ∗ = 48 = 24 × 3. Then |Syl2(G)| = 3. So G ∼= a subgroup of (Sym(Syl2(G)) ∼= S3) and
in particular 48 | 6, which is absurd.

• Version 2: Prove that a finite group G with given properties (usually conjugacy classes of elements
of prime order) is simple. Essentially, use the following corollary.
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Corollary 3.4.1. Let N ⊴G a finite group and p a prime divisor of |G|. Then
(1) x ∈ N ⇒ {gxg−1 : g ∈ G} ⊆ N .
(2) p ∤ |G : N | ⇒ Sylp(N) = Sylp(G) and Fp(N) = Fp(G).

Proof. (1) Immediate from definition.
(2) By the 2nd isomorphism theorem, for a P ∈ Sylp(G), P/(P ∩ N) ∼= PN/N ≤ G/N . So

|PN/N | | |P |, hence by Lagrange’s, PN/P is a p-subgroup of G/N . But p ∤ |G : N |, so
PN/N = {1G/N}, i.e. PN = N , so P ≤ N . So |N |p = |G|p, hence Sylp(G) ⊆ Sylp(N). The other
inclusion is clear.

Now Fp(G) =
⋃

P∈Sylp(G) P\{1G} =
⋃

P∈Sylp(N) P\{1G} = Fp(N).
□

Theorem 3.4.2. A5 is simple.

Proof. We need 4 facts about G = A5 to start with:
(1) |G| = 60 = 22 × 3× 5.
(2) G has 24 elements of order 5, the 5-cycles.
(3) G has 20 elements of order 3, the 3-cycles.
(4) G has 15 elements of order 2, precisely of the form (a, b)(c, d) where a, b, c, d ∈ {1, . . . , 5} are

distinct and all such elements are conjugate.

Week 6, lecture 3

Suppose G is not simple and let N ⊴G.
1◦: p | |N | for some p ∈ {3, 5}. Then since |G|p = p, p ∤ |G : N |. So Fp(G) = Fp(N). Hence

• p = 5 ⇒ |N | ≥ |F5(N)|+ 1 ≥ 25
• p = 3 ⇒ |N | ≥ |F3(N)|+ 1 ≥ 21

so Lagrange’s implies |N | = 30, i.e. both 3 and 5 divide |N |. But again by Corollary 3.4.1

|N | ≥ |F3(N)|+ |F5(N)|+ 1 ≥ 45,

a contradiction.
2◦: Neither 3 nor 5 divides |N |, then |N | | 4, so by Cauchy’s it contains an element of order 2. Hence

N contains all elements of order 2, so 15 ≤ |N | | 4, a contradiction.
□

Lemma 3.4.3. Let X be the set of 3-cycles in G = An for n ≥ 3. Then G = ⟨X⟩, and if n ≥ 5 then all
3-cycles are conjugate.

Proof. By sheet 2 Q7, every element of An can be written as a product of an even number of transpositions.
Hence it suffices to prove that (a, b)(c, d) can be written as a product of 3-cycles.

1◦: (a, b) = (c, d), then (a, b)(c, d) = 1 = (1, 2, 3)3.
2◦: |{a, b} ∩ {c, d}| = 1. WLOG a = c. Then (a, b)(c, d) = (a, b)(a, d) = (a, d, b).
3◦: {a, b} ∩ {c, d} = ∅, then (a, b)(c, d) = (a, b, c)(b, c, d).

Now G acts on X by conjugation. It suffices to show orbG((1, 2, 3)) = X. So let (a, b, c) ∈ X with
a, b, c distinct. We want to find g ∈ G : g(1, 2, 3)g−1 = (a, b, c).

1◦: {1, 2, 3} ∩ {a, b, c} = ∅. Set g = (1, 2)(1, a)(2, b)(3, c). We add (1, 2) just to make g even, and
it doesn’t effect since disjoint cycles commute and (1, 2)(a, b, c)(1, 2)−1 = (a, b, c)(1, 2)(1, 2)−1 =
(a, b, c).

2◦, 3◦: Similar.
□

Lemma 3.4.4. Let n ≥ 5 and σ ∈ An. Then ∃ a conjugate σ′ ̸= σ and some i ∈ {1, . . . , n} such that
σ(i) = σ′(i).

Proof. Let r be the length of the longest cycle in σ. WLOG, we can write σ = (1, 2, . . . , r)π for some
π ∈ Sn with π disjoint from (1, . . . , r) and being a product of cycles of length ≤ r.

1◦: r ≥ 3. Then set g = (3, 4, 5) and σ′ = gσg−1 = g(1, . . . , r)g−1gπg−1 = (1, 2, 4, . . .)gπg−1. So
σ(1) = σ′(1) = 2 but σ(2) = 3 ̸= 4 = σ′(2).

2◦: r ≤ 2. Left as an exercise.
□

Remark. (1) Recall if N ⊴G and H ≤ G then H ∩N ⊴H (2nd isomorphism theorem).
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(2) Exercise: if i ∈ {1, . . . , n} then stabAn
(i) ∼= An−1.

Theorem 3.4.5. An is simple for n ≥ 5.

Proof. Suppose G = An is not simple and let N ⊴G. We prove by induction on n with base case n = 5.
By lemma above, for 1 ̸= σ ∈ N, ∃i ∈ {1, . . . , n} and gσg−1 ̸= σ :(

gσg−1
)−1

(σ)(i) = i,

so
1 ̸=

(
gσg−1

)−1
(σ) ∈ N ∩ stabG(i)⊴ stabG(i).

So by induction hypothesis which says stabG(i) ∼= An−1 is simple, N ∩ stabG(i) can only be the whole
group stabG(i). So stabG(i) ≤ N , hence N contains a 3-cycle. But then by previous lemmas, N contains
all 3-cycles. But An is generated by 3-cycles, so An ≤ N . Hence An = N , a contradiction. □

Week 7, lecture 1

4. Classifying groups of small order

4.1. Semidirect product.

Definition 4.1.1. Let H,K be groups. Define a binary operation · : (H × K) × (H × K) → H × K
by (h1, k1) · (h2, k2) = (h1h2, k1k2). Then (H ×K, ·) is a group, called the direct product of H and K,
denoted usually simply H ×K.

Remark. (1) One can generalise this definition to product of more than 2 groups.
(2) The identity of G1 × · · · ×Gt is (1G1

, . . . , 1Gt
), and (g1, . . . , gt)

−1 =
(
g−1
1 , . . . , g−1

t

)
.

(3) H ×K ∼= K ×H.

Lemma 4.1.2. Let H,K ⊴G with H ∩K = {1G} and G = HK. Then
(1) hk = kh ∀h ∈ H, k ∈ K.
(2) G ∼= H ×K.

Proof. (1) Let h ∈ H, k ∈ K. Note hk = kh ⇔ hkh−1k−1 = 1. Since H ⊴ G, kh−1k−1 ∈ H, so
hkh−1k−1 ∈ H. By symmetry of H and K, hkh−1k−1 ∈ K as well, so hkh−1k−1 = 1 as desired.

(2) Define φ : H × K → HK = G by (h, k) 7→ hk. Sanity check: if (h1, k1), (h2, k2) ∈ H × K
then φ((h1, k1)(h2, k2)) = φ((h1h2, k1k2)) = h1h2k1k2 = h1k1h2k2 = φ((h1, k1))φ((h2, k2)). It
immediately follows from assumption that φ is surjective. Now if (h, k) ∈ kerφ then h = k−1 ∈
H ∩K = {1}, so h = k = 1 and hk = 1, i.e. kerφ = {1} which implies φ is injective.

□

Remark. The hypotheses of this lemma are not too bad to work with. Lagrange’s theorem allows us to
study H ∩K, Proposition 2.2.18 allows to study HK, and Sylow theorems say a lot about normality.

Definition 4.1.3. An isomorphism ϕ : G → G is an automorphism of G. The set Aut(G) := {ϕ :
ϕ an automorphism} is a group under composition, called the automorphism group of G.

Example 4.1.4. (1) id : G → G is an automorphism.
(2) If G = Cp where p is prime, then fe : G → G : xi 7→ xie ∈ Aut(G) for 1 ≤ e ≤ p− 1. Furthermore,

this is in fact all the automorphisms and Aut(Cp) ∼= Cp−1 (see sheet 4 Q8).
(3) If K ⊴G and g ∈ G, then cg : K → K : x 7→ gxg−1 ∈ Aut(K).

Definition 4.1.5. Let H,K be groups and ϕ : H → Aut(K) a homomorphism. For h ∈ H, write ϕh

in place of ϕ(h). Define a binary operation ∗ : (H ×K) × (H × K) → H × K by (h1, k1) ∗ (h2, k2) =(
h1h2, ϕh−1

2
(k1)k2

)
. Then (H ×K, ∗) is a group, called the semidirect product of H and K with respect

to ϕ, denoted H ⋉ϕ K.

Remark (Defence of the definition). This is not as weird as it looks. If x, y ∈ G then xy = ycy−1(x)
where cy is as in Example 4.1.4.3 above. Also, this really is a generalisation of the direct product. To see
this, define ϕh to be idK ∀h ∈ H.

Week 7, lecture 2

Example 4.1.6. (1) Inversion homomorphism: let H = ⟨x⟩ with |x| = 2 and K be abelian. Define
ϕ : H → Aut(K) by ϕ1H = idK and ϕx(k) = k−1.

Check ϕx is an automorphism: indeed ϕx ∈ Aut(K) since it’s clearly bijective and as K is
abelian, ϕx(k1k2) = k−1

2 k−1
1 = k−1

1 k−1
2 = ϕx(k1)ϕx(k2).

Check ϕ is a homomorphism, i.e. ϕh1h2
= ϕh1

◦ ϕh2
∀h1, h2 ∈ H, which is not difficult to show.
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(2) Conjugation homomorphism: let G be finite and K ⊴ G,H ≤ G. Define ϕ by ϕh(k) = hkh−1.
Again it’s not difficult to do the two sanity checks.

Lemma 4.1.7 (General form of Lemma 4.1.2). If H ≤ G,K ⊴G with H ∩K = {1G} and G = HK, then
G ∼= H ⋉ϕ K where ϕ is conjugation homomorphism.

Proof. Again it suffices to show f : H⋉ϕK → G : f((h, k)) = hk is an isomorphism. Let (h1, k1), (h2, k2) ∈
H ⋉ϕ K, then

f((h1, k1)(h2, k2)) = f((h1h2, ϕh−1
2
(k1)k2)) = h1h2ϕh−1

2
(k1)k2

= h1h2(h
−1
2 k1h2)k2 = h1k1h2k2 = f((h1, k1))f((h2, k2)).

To show f is bijective is similar to proof of Lemma 4.1.2. □

Example 4.1.8 (Dihedral groups as semidirect products). Recall Definition 2.1.7, write G = D2n = ⟨σ, τ⟩,
and let C2

∼= H := ⟨τ⟩ ≤ G, Cn
∼= K := ⟨σ⟩⊴G. Proposition 2.2.18 says

|HK| = |H||K|
|H ∩K|

=
2× n

1
= 2n = |G|

since if H ∩K ̸= {1} then it would have to be H since |H| = 2. Thus G = HK, so by previous lemma
G ∼= H ⋉ϕ K where ϕ is conjugation homomorphism.

Note that

ϕτ (σ) = τστ−1 = (τ(1), τ(2), . . . , τ(n)) = (n, n− 1, . . . , 1) = σ−1

and in general ϕτ (σ
i) = σ−i, so ϕ is also inversion homomorphism.

Lemma 4.1.9 (Generalising example above). Let G be nonabelian and finite. If

• G has a cyclic subgroup K of order |G|
2 =: n,

• G\K has an element x of order 2, and
• the only i ∈ {1, . . . , n− 1} : i2 ≡ 1modn are 1 and n− 1, (†)

then G ∼= D2n.

Proof. First note that † is satisfied when n = 6, n = p or n = p2 where p is prime.

Week 7, lecture 3

Set H = ⟨x⟩ ≤ G and note that K ⊴G since [G : K] = 2, H ∩K = {1G} since x ∈ G\K and

|HK| = |H||K|
|H ∩K|

= 2n = |G|,

so G = HK. Recall Lemma 4.1.7, assumptions of which are all satisfied. It remains to show that
conjugation homomorphism ϕ is equal to inversion homomorphism here by example above, i.e. showing
ϕx(k) = k−1 ∀k ∈ K. Since K is cyclic of order n, one can write K = ⟨y⟩ with |y| = n. By exercises
below, it suffices to show ϕx(y) = y−1. Note that xyx−1 ∈ ⟨y⟩ since K ⊴ G, i.e. xyx−1 = yi for some
i ∈ {1, . . . , n− 1}. Since ϕ1H = idK , one has

y = ϕ1H (y) = ϕx2(y) = (ϕx ◦ ϕx)(y) = ϕx(ϕx(y)) = ϕx(y
i) = ϕx(y)

i = (xyx−1)n,

so y = yi
2

, i.e. yi
2−1 = 1G. By Lemma 1.3.3, n | i2 − 1, i.e. i2 ≡ 1modn, so by assumption i = 1 or

n − 1. One now has that ϕx(y) = y or y−1, but if xyx−1 = y then xkx−1 = k ∀k ∈ K, i.e. ϕ is trivial
homomorphism, which implies G = H ⋉ϕ K ∼= H ×K ∼= C2 × Cn is abelian, contradicting assumption.
So ϕx(y) = y−1, inversion homomorphism. □

Exercise 4.1.10. (1) If H = ⟨A⟩ , K = ⟨B⟩, show hkh−1 = k ∀h ∈ H, k ∈ K ⇔ aba−1 = b ∀a ∈
A, b ∈ B.

(2) If H = ⟨x⟩ with |x| = 2 and K = ⟨B⟩ is abelian, show xkx−1 = k−1 ∀k ∈ K ⇔ xbx−1 = b−1 ∀b ∈
B.
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4.2. Semidirect product of an abelian group and a cyclic group. In this section, we fix a finite
group G with an abelian subgroup K of odd order |G|

2 (so we know it’s normal) and let H = ⟨x⟩ ∈ Syl2(G)
with |x| = 2 (as |G| = 2×odd number).

Notation. For v ∈ K, write [v, x] := vxv−1x−1 (the commutator).

Lemma 4.2.1 (Fitting’s). Write [K,x] := ⟨[v, x] : v ∈ K⟩. One has
(1) xkx−1 = k−1 ∀k ∈ [K,x],
(2) K ∼= [K,x]× CK(x),
(3) G ∼= (H ⋉ϕ [K,x])× CK(x) where ϕ is inversion homomorphism.

Proof. (1) It suffices to show it for k = [v, x], a generator of [K,x]. Since |x| = 2, one has

x[v, x]x−1 = xvxv−1x−1x−1 = xvx−1v−1 = [v, x]−1.
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(2) First note that for v, w ∈ K,

[vw, x] = (vw)x(vw)−1x−1 = vwxw−1v−1x−1

= vw
(
xw−1x−1

) (
xv−1x−1

)
= [v, x][w, x],

and [v, x] = 1 iff v and x commute, i.e. v ∈ CK(x).
Now define f : K → [K,x] by f(k) = [k, x]. f is a homomorphism with ker f = CK(x) by

above. We claim
(a) CK(x), [K,x]⊴K. This is trivial since K is abelian.
(b) CK(x) ∩ [K,x] = {1}. Indeed, if a ∈ CK(x) ∩ [K,x], then a = xax−1 = a−1 by part 1, so

|a| = 1 or 2. But since |K| is odd, by Lagrange’s |a| must be 1, so a = 1.
(c) K = [K,x]CK(x). Indeed, by 1st isomorphism theorem |K| = | im f || ker f | = |[K,x]||CK(x)|,

hence by 2.2.18 one has

|[K,x]CK(x)| = |[K,x]||CK(x)|
|[K,x] ∩ CK(x)|

= |[K,x]||CK(x)| = |K|.

So by Lemma 4.1.2 one has the desired.
(3) Left as an exercise, see sheet 4 Q14.

□

4.3. Infinite families.

4.3.1. Abelian groups.

Theorem 4.3.1 (Fundamental theorem of finite abelian groups). Let G be a finite abelian group of order
n. Then ∃ divisors d1 | · · · | dt of n such that G ∼= Cd1

× · · · × Cdt
.

Proof. See MA251. □

Example 4.3.2. The abelian groups of order 8 are C8, C2 × C4, C2 × C2 × C2.

4.3.2. Groups of order p, p2, 2p where p prime.

Lemma 4.3.3. |G| = p ⇒ G ∼= Cp.

Proof. Note that by Lagrange’s, any x ∈ G\{1} has |x| = p, so G = ⟨x⟩ ∼= Cp. □

Lemma 4.3.4. |G| = p2 ⇒ G ∼= Cp2 or Cp × Cp.

Proof. This follows immediately from Corollary 2.2.14 and Theorem 4.3.1. □

Lemma 4.3.5. If p is odd, then |G| = 2p ⇒ G ∼= C2p or D2p.

Proof. If G is abelian then G ∼= C2p by 4.3.1. If G is nonabelian and let K ∈ Sylp(G), H = ⟨x⟩ ∈ Syl2(G)
where |x| = 2. Then

(1) |K| = |G|
2 = p, so K ∼= Cp,

(2) x ∈ G\K,
(3) If i2 ≡ 1mod p then i ≡ ±1mod p since Z/pZ is a field,

so by Lemma 4.1.9 one has G ∼= D2p. □
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4.3.3. Groups of order 2p2 where p odd prime.

Definition 4.3.6. Let K = Cp×Cp, H = C2 and ϕ : H → Aut(K) be inversion homomorphism. H⋉ϕK
is called the generalised dihedral group of order 2p2 and denoted GD2p2 .

Lemma 4.3.7. |G| = 2p2 ⇒ G ∼= either C2p2 , Cp × C2p, GD2p2 , D2p2 or Cp ×D2p.

Proof. (1) If G is abelian then G ∼= C2p2 or Cp × C2p by 4.3.1.
(2) If G is nonabelian, let K ∈ Sylp(G) and H = ⟨x⟩ ∈ Syl2(G) where |x| = 2. Then K ∼= either Cp2

or Cp × Cp.
(a) If K ∼= Cp2 then similarly the three conditions of 4.1.9 are satisfied and G ∼= D2p2 .
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(b) If K ∼= Cp × Cp then by Fitting’s lemma, G ∼= (H ⋉ϕ [K,x])× CK(x) where ϕ is inversion

homomorphism. By Lagrange’s, |CK(x)| is either 1, p or p2. But if |CK(x)| = p2 then
K = CK(x), i.e. kx = xk ∀k ∈ K, contradicting G being abelian since it is generated by K
and x.

(i) If |CK(x)| = 1 then CK(x) = {1}. By Fitting’s lemma, K ∼= [K,x]× CK(x) ∼= [K,x]
and so G ∼= H ⋉ϕ K ∼= C2 ⋉ϕ (Cp × Cp) ∼= GD2p2 .

(ii) If |CK(x)| = p then CK(x) ∼= Cp and so [K,x] ∼= Cp, therefore G ∼= (H ⋉ϕ [K,x]) ×
CK(x) ∼= (C2 ⋉ϕ Cp)× Cp

∼= D2p × Cp.
□

4.3.4. Groups of order pq where p, q prime with p < q and p ∤ (q − 1).

Lemma 4.3.8. Let p, q be as above. Then |G| = pq ⇒ G ∼= Cpq.

Proof. By Sylow theorems, |Sylq(G)| ≡ 1mod q and |Sylq(G)| | |G|
|G|q = p. Since q > p and p ̸≡

1mod q, |Sylq(G)| = 1. Similarly, |Sylp(G)| = 1. Write Sylp(G) = {P} and Sylq(G) = {Q}. Then
P,Q⊴G, P ∩Q = {1} and G = PQ since |PQ| = |P ||Q|

|P∩Q| = pq = |G|. So by Lemma 4.1.2 and Theorem
4.3.1, G ∼= P ×Q ∼= Cp × Cq

∼= Cpq. □

4.4. 2 missing pieces.

4.4.1. Groups of order 8.

Definition 4.4.1. Let i, j, k be indeterminates and define

Q8 := {±1,±i,±j,±k} ⊆ R[i, j, k].
Define binary operation · : Q8 ×Q8 → Q8 by

(1) 1 · g = g · 1 := g and (−1) · g = g · (−1) := −g ∀g ∈ Q8.
(2) i · j := k, j · k := i, k · i := j.
(3) j · i := −k, k · j := −i, i · k := −j.
(4) (±1)2 = 1, g2 := −1 ∀g ∈ Q8\{±1}.

(Q8, ·) is then a group with its full Cayley table determined, called the quaternion group.

Remark. (1) Z(Q8) = {±1}.
(2) Q8 has 1 element of order 2 (−1) and 6 elements of order 4 (±i,±j,±k).
(3) Q8 = ⟨i, j⟩ = ⟨i, k⟩ = ⟨j, k⟩.

Lemma 4.4.2. |G| = 8 ⇒ G ∼= either C8, C2 × C4, C2 × C2 × C2, D8 or Q8.

Proof. (1) If G is abelian then by 4.3.1 G ∼= either C8, C2 × C4 or C2 × C2 × C2.
(2) If G is nonabelian, then of the 7 elements of order > 1, none has order 8 (since then G would be

C8) and at least one has order ̸= 2 (since if all elements have order 2, G would be abelian), so
by Lagrange’s there must ∃u ∈ G : |u| = 4. Let K = ⟨u⟩ and v ∈ G\K with minimal order. One
then has G = ⟨u, v⟩. We claim vuv−1 = u−1. Indeed, vuv−1 ∈ K = {1, u, u2, u−1} since K ⊴G.
We know |vuv−1| = |u| = 4 and |u2| = 2, so vuv−1 is either u or u−1. But if vuv−1 = u then G
would be abelian, a contradiction. Now
(a) If |v| = 2 then conditions of Lemma 4.1.9 are satisfied, so G ∼= D8.
(b) If |v| = 4, note that G = K ⊔ vK and all elements of vK have order 4, so G has 1 element

of order 2 (u2) and 6 elements of order 4. It follows that g2 = u2 ∀g ∈ G : |g| = 4, since g2

has order 2 and u2 is the only such element. Now if we see G as {1, u2, u±1, v±1, (uv)±1} we
have G ∼= Q8.

□

Week 8, lecture 3
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4.4.2. Groups of order 12.

Definition 4.4.3. Let H = C4 = ⟨x⟩ where |x| = 4 and K = C3. Define ϕ : H → Aut(K) by
ϕxi(k) = k(−1)i . The group H ⋉ϕ K is called the dicyclic group or order 12, denoted Dic12.

Lemma 4.4.4. |G| = 12 ⇒ G ∼= either C12, C2 × C6, Dic12, A4 or D12.

Proof. (1) If G is abelian then by 4.3.1 G ∼= either C12 or C2 × C6.
(2) If G is nonabelian, then

(a) If G has an element a of order 6, let K = ⟨a⟩. Then all subgroups of K are normal (see sheet
3 Q9). Now

(i) If G\K has an element of order 2 then conditions of 4.1.9 hold, so G ∼= D12.
(ii) If G\K has no element of order 2, then let P ∈ Syl2(G). We know P ̸≤ Kby Lagrange’s,

so choose x ∈ P\K. |x| can only be 4 since it cannot be 1 or 2. Let H = ⟨x⟩ and
K1 =

〈
a2
〉
. So |H| = 4, |K1| = 3, and so conditions of 4.1.7 hold and G ∼= H ⋉ϕ K1

where ϕ is conjugation homomorphism. We claim that in this case, ϕ is the same
as the ϕ defined in 4.4.3 and so that G ∼= Dic12. Indeed, let k ∈ {a2, a−2} ⊆ K1.
Then G = ⟨x, k⟩ and xkx−1 is either k or k−1 since K1 ⊴ G. But xkx−1 ̸= k since
G is nonabelian. So ϕx(k) = xkx−1 = k−1 and hence ϕxi(k) = k(−1)i since ϕ is a
homomorphism.

(b) If G has no element of order 6, then let P = ⟨x⟩ ∈ Syl3(G) where |x| = 3. By Sylow
theorems, |Syl3(G)| ∈ {1, 4}. By 2.2.16.3, |CG(x)| is odd, and since x ∈ CG(x), |CG(x) = 3
and |F3(G)| ≥ |G : CG(x)| = 4. By 3.3.2.3, |F3(G)| = 2|Syl3(G)|, so |Syl3(G)| ≥ 2, hence
|Syl3(G)| = 4 and P ⋬ G. Now let G act on X = G/P by left multiplication. By sheet 2 Q9,
ker(G,X, ·) ≤ P . By Lagrange’s, ker(G,X, ·) is either trivial or P , but kernels are normal,
so ker(G,X, ·) is trivial and the action is faithful, so by 2.2.6, G ∼= a subgroup of S4. The
only subgroup of S4 of order 12 is A4.

□

4.5. Final theorem of the chapter.

Theorem 4.5.1. The only simple group of order 60 is A5.

Proof. Let G be a simple group of order 60 = 22 × 3× 5. We claim:

(1) If H ⪇ G then |H| ≤ 12.
Indeed, since G is simple, G acts faithfully on X = G/H (as ker(G,X, ·) ≤ H ⪇ G), so by 2.2.6,

G ∼= a subgroup of S|G:H| and hence |G| | |G : H|!. Since |G| = 60, |G : H| ≥ 5, so |H| ≤ 12, i.e.
G has no subgroup of index 4 or less.

(2) If P1, P2 ∈ Syl2(G) and P1 ∩ P2 ̸= {1}, then H = ⟨P1 ∪ P2⟩ ⇒ |H| = 12.
Indeed, let x ∈ P1 ∩ P2\{1}. Then x ∈ Z(P1) ∩ Z(P2) since |P | = 4 and all groups of order 4

are abelian. So H = ⟨P1 ∪ P2⟩ ≤ CG(x). Since G is simple, Z(G) = {1}, so CG(x) ⪇ G and so
H ⪇ G. By claim 1 |H| ≤ 12.
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Now, 4 | |H| since |P1| = 4. Also, |Syl2(H)| ≡ 1mod 2 by Sylow theorems, i.e. it’s odd, and
by 3.3.1 |Syl2(H)| | |H|, so 4 × (an odd number) | |H|. But as P1, P2 ≤ H, |Syl2(H)| ≥ 2, so
|H| ≥ 12. We conclude that |H| = 12.

(3) If P1 ∩ P2 = {1} ∀P1 ̸= P2, P1, P2 ∈ Syl2(G) then H = NG(P ) has order 12 ∀P ∈ Syl2(G).
Indeed, again |Syl2(G)| = |G : NG(P )| is odd, so |Syl2(G)| ∈ {1, 3, 5, 15}. It’s not 1 since G is

simple, it’s not 3 by claim 1, so |Syl2(G)| ∈ {5, 15}. Suppose it’s 15. Note that |Syl5(G)| = 6, and
by 3.3.2, since |G|5 = 5, |F5(G)| = 6× (4− 1) = 24. By the assumption that Pi\{1} are disjoint,

|F2(G)| =

∣∣∣∣∣∣
⋃

P∈Syl2(G)

P\{1}

∣∣∣∣∣∣ = 15× (4− 1) = 45,

so we have at least 69 elements in a group of order 60, an absurdity. Hence |Syl2(G)| = 5 and
|NG(P )| = 12. Combined with claim 2, this means G always has a subgroup of index 5.

Now let H ≤ G be a subgroup of index 5, then again by argument in proof of claim 1, G ∼= a subgroup of
S5, but the only subgroup of Sn of order n!

2 is An. □
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5. Soluble group and Jordan–Hölder theorem

5.1. Composition series.

Notation. H ⪇ G means H is a proper subgroup and H ⪇◁ G means H is a proper normal subgroup.

Definition 5.1.1. A composition series for a group G is a series

{1G} = G0 ⪇◁ G1 ⪇◁ · · · ⪇◁ Gr = G

where the (finite) r is called length of the series, such that Gi/Gi−1 is simple ∀1 ≤ i ≤ r.

Example 5.1.2. (1) If G = D2p with the usual generators σ, τ , then

G0 = {1}, G1 = ⟨σ⟩ , G2 = G

is a composition series since C2 and Cp are simple.
(2) If G = Sn where n ≥ 5 then

G0 = {1}, G1 = An, G2 = G

is a composition series.
(3) If G = D8 with σ = (1, 2, 3, 4) and τ = (1, 4)(2, 3), then

G0 = {1}, G1 =
〈
σ2

〉
, G2 =

〈
σ2, τ

〉
, G3 = G

is a composition series. We could have also set G2 = ⟨σ⟩.

Theorem 5.1.3. Every finite group has a composition series.

Proof. By convention, the trivial group has the composition series G0 = G of length 0. We then proceed
to prove by induction on |G| and assume all groups of order < |G| have a composition series.
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If G is simple then G0 = {1}, G1 = G is a composition series, so suppose G is not simple. Then
∃N : {1} ≠ N ≠ G and N ⊴ G. By inductive hypothesis, N and G/N both have a composition series,
and one writes

{1G} = N0 ⪇◁ N1 ⪇◁ · · · ⪇◁ Nr = N

{1G/N} = G0 ⪇◁ G1 ⪇◁ · · · ⪇◁ Gs = G/N

Now, by Theorem 1.6.6, ∃Xi : N ≤ Xi ≤ G and Xi/N = Gi for all i = 1, . . . , s. Also by Theorem 1.6.5,
one has

Xi/N

Xi−1/N
∼=

Xi

Xi−1
,

which is simple. Now define

Gi :=

{
Ni, 1 ≤ i ≤ r

Xi−r, r + 1 ≤ i ≤ r + s

and note that Xr = N since {1G/N} = N/N , so

G0 ⪇◁ G1 ⪇◁ · · · ⪇◁ Gr+s = G

is a composition series. □

Corollary 5.1.4 (Direct byproduct of proof but useful to write down). Let G be a finite group, N ⊴G,
and

{1G} = N0 ⪇◁ N1 ⪇◁ · · · ⪇◁ Nr = N

{1G/N} = N/N ⪇◁ X1/N ⪇◁ · · · ⪇◁ Xs/N = G/N

be composition series for N and G/N where N ≤ Xi ≤ G, then

Gi :=

{
Ni, 1 ≤ i ≤ r

Xi−r, r + 1 ≤ i ≤ r + s

yields a composition series.

Example 5.1.5. Recall 5.1.2.3 in which we have two different composition series for D8. But they are
not that different after all: length is both 3 and all Gi/Gi−1

∼= C2 in both cases. Let’s codify this.
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Definition 5.1.6. Let

(I) {1G} = A0 ⪇◁ · · · ⪇◁ Ar = G

(II) {1G} = B0 ⪇◁ · · · ⪇◁ Bs = G

be 2 composition series for a group G. We say (I) and (II) are equivalent (and write (I) ∼ (II)) if r = s
and ∃ a bijection

f : {Ai/Ai−1 : 1 ≤ i ≤ r} → {Bj/Bj−1 : 1 ≤ j ≤ s}
such that Ai/Ai−1

∼= f(Ai/Ai−1).

Theorem 5.1.7 (Jordan–Hölder). Any two composition series of a finite group are equivalent.

Proof. Let two composition series (I) and (II) of a group G be as above, WLOG assume r ≤ s and do
induction on r. Base case r = 0 is trivial so suppose r > 0 and statement is true for smaller r.

1◦ Ar−1 = Bs−1 are the same group, then the two series are equivalent by inductive hypothesis.
2◦ Ar−1 ̸= Bs−1. The idea is to construct two new composition series to ‘link’ the current ones

together. Denote Ar−1 by A and Bs−1 by B, and let D := A ∩B.
We claim A ̸≤ B and B ̸≤ A. Indeed, suppose A ≤ B, then B/A⊴G/A. But G/A is simple,

so B is either A or G, and since we assume A ≠ B, it must be B = G, but by definition B ⪇◁ G, a
contradiction.

We now claim D ⊴A and A/D ∼= G/B (and symmetrically D ⊴B and B/D ∼= G/A). Indeed,
note that by Theorem 1.6.4.2, since A ⊴ Ar = G so A ∩ B ⊴ B and since B ⊴ Bs = G so
A ∩B = D ⊴A. Again by 1.6.4.3,

A

D
=

A

A ∩B
∼=

AB

B
,
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so it remains to prove AB = G. Now, A,B ⊴G ⇒ AB ⊴G ⇒ AB

B ⊴ G
B , where G/B is simple,

so AB is either B or G, but AB ≠ B since A ̸≤ B. By Theorem 5.1.3, D has a composition series

{1} = D0 ⪇◁ · · · ⪇◁ Dt = D,

and since A/D and B/D are simple, we have two new composition series for G

(III) {1} = D0 ⪇◁ · · · ⪇◁ Dt ⪇◁ A ⪇◁ G,

(IV) {1} = D0 ⪇◁ · · · ⪇◁ Dt ⪇◁ B ⪇◁ G,

where (III) ∼ (I) and (IV) ∼ (II) by case 1, so r = s = t + 2. Finally, since G/B ∼= A/D and
G/A ∼= B/D, we see that (III) ∼ (IV) by definition, so (I) ∼ (II) by transitivity.

□

Definition 5.1.8. Let G be a finite group and {1G} = G0 ⪇◁ · · · ⪇◁ Gr = G a composition series. The
factors Gi/Gi−1 are called the composition factors of G and r is called the composition length of G.

Jordan–Hölder theorem justifies the ‘the’ before the noun defined.

Remark. Composition factors don’t determine a group, e.g. D8 and Q8.

Example 5.1.9. (1) D2p has factors Cp, C2.
(2) Sn with n ≥ 5 has factors An, C2.
(3) D8 has factors C2, C2, C2.

Note that factors of 1 and 3 are all cyclic groups of prime order, this is something special we want to
define.

Definition 5.1.10. A finite group is soluble if all composition factors are cyclic of prime order.

Lemma 5.1.11. Let G be a finite group and N ⊴G. Then G is soluble iff N and G/N are soluble.

Proof. See 5.1.4. □

Example 5.1.12. (1) By above, D2n is soluble since Cn and D2n/Cn = C2 are soluble (all abelian
groups are soluble).

(2) To show S4 is soluble, note that A4 is soluble (proof left as an exercise) and S4/A4 = C2 is soluble.

Week 10, lecture 1
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5.2. Commutator.

Definition 5.2.1. Let G be a group and g, h ∈ G. The commutator of g, h is [g, h] = ghg−1h−1.

Example 5.2.2. (1) [g, h] = 1G ⇔ g, h commute, so [g, h] = 1G ∀g, h ∈ G ⇔ G is abelian.
(2) In A5 one has

[(1, 2, 4)(1, 3, 5)] = (1, 2, 4)(1, 3, 5)(1, 4, 2)(1, 5, 3) = (1, 2, 3),

and in general for An with n ≥ 5 and a, b, c, d, e ∈ {1, . . . , n} distinct, one has

[(a, b, d)(a, c, e)] = (a, b, c),

so all 3-cycles in An are commutators, which therefore generate An by Lemma 3.4.3.

Definition 5.2.3. The subgroup
[G,G] := ⟨[g, h] : g, h ∈ G⟩

is the commutator subgroup of G.

Remark. (1) More generally, we can think about the commutator subgroup of 2 subgroups H,K ≤ G
with the definition

[H : K] = ⟨[h, k] : h ∈ H, k ∈ K⟩ .
(2) The commutator subgroup is not necessarily the set of commutators. It’s a fair mistake to

confuse the two since one has to go to order 96 to find a counterexample of commutator subgroup
containing non-commutators.

Example 5.2.4. (1) If G is abelian then [G,G] = {1G}.
(2) [An, An] = An for n ≥ 5.

Theorem 5.2.5. (1) [G,G]⊴G.
(2) G/[G,G] is abelian.
(3) If N ⊴G and G/N is abelian then [G,G] ≤ N , i.e. [G,G] is the smallest normal subgroup H of

G with G/H abelian.

Proof. (1) It suffices to check that conjugates of one of generators of [G,G], i.e. a commutator, is
also a commutator. Let g, h, k ∈ G, then

g[h, k]g−1 = ghkh−1k−1g−1 = gh(g−1g)k(g−1g)h−1(g−1g)k−1g−1

= (ghg−1)(gkg−1)(gh−1g−1)(gk−1g−1)

= [ghg−1, gkg−1].

(2) Denote N = [G,G] and again let g, h ∈ G. Note that

[g, h] ∈ N ⇒ N [g, h] = N ⇒ Nghg−1h−1 = N ⇒ Ngh = Nhg ⇒ (Ng)(Nh) = (Nh)(Ng).

(3) By the same (but reverse) argument one has [g, h] ∈ N , so [G,G] ≤ N .
□

Example 5.2.6. In G = D2n one has τστ−1 = σ−1, so [τ, σ] = σ−2. Also N := ⟨σ⟩ ⊴ G and so
K :=

〈
σ−2

〉
=

〈
σ2

〉
≤ N , which implies K ⊴G (see sheet 3 Q9) and by definition K ≤ [G,G].

1◦ If n is odd then K = N since |σ2| = |σ| (2 and n are coprime), and |G : K| = 2 with G/K = C2,
abelian, so [G,G] ≤ K, hence [G,G] = K.

2◦ If n is even then |K| = n
2 and so |G/K| = 4 with G/K abelian by 2.2.14, so still [G,G] ≤ K and

hence [G,G] = K.

Exercise 5.2.7. (1) Let F be a finite field of size at least 4. Show [G,G] = G where G = SL2(F).
(2) Show that every element of A5 is a commutator. In fact, if G is a nonabelian simple group and

x ∈ G, then ∃g, h ∈ G : [g, h] = x (this, known as Ore’s conjecture, was not proven until 2008).

Definition 5.2.8. Define G(0) = G, G(1) = [G,G] and inductively G(i) = [G(i−1), G(i−1)] for i ≥ 2. The
descending series G(0) ≥ G(1) ≥ · · · is called the derived series of G.

Remark. (1) H ≤ G ⇒ H(n) ≤ G(n).
(2) For n,m ∈ N,

(
G(n)

)(m)
= G(n+m).
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Example 5.2.9. (1) A
(i)
n = An ∀i ∈ N for n ≥ 5.
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(2) D
(1)
2n =

〈
σ2

〉
and D

(2)
2n = [

〈
σ2

〉
,
〈
σ2

〉
] = {1G} since cyclic groups are abelian.

Observe the two patterns: one does not terminate at the trivial group and the other does. Also note
that An is not soluble for n ≥ 5 while D2n is. This brings us to the following theorem.

Theorem 5.2.10. A finite group G is soluble iff G(n) = {1G} for some n ∈ N.

Proof. ⇒: We prove by induction on |G|. The base case is trivial so suppose statement holds for all
groups of order < |G| and |G| > 1. By definition, a composition series {1G} = G0 ⪇◁ · · · ⪇◁ Gr = G
satisfies Gi/Gi−1 is cyclic of prime order ∀1 ≤ i ≤ r. In particular, Gr−1 ⪇◁ G and G/Gr−1 is
abelian, so by Theorem 5.2.5 G(1) ≤ Gr−1 and also G(1) ⪇◁ G. Hence by Lemma 5.1.11, G(1) is
soluble, so by inductive hypothesis

(
G(1)

)n
= G(1+n) = {1G} for some n ∈ N.

⇐: We prove by induction on n. The base case n = 1 implies G is abelian, so soluble. Now suppose
statement holds for smaller values of n and denote [G,G] = G(1) by N . Then

N (n−1) =
(
G(1)

)(n−1)

= G(n) = {1G},

so N is soluble by inductive hypothesis. Now G/N is abelian by Theorem 5.2.5, so soluble. Hence
G is soluble by Lemma 5.1.11.

□

Remark. (1) In this course, we only defined ‘soluble’ for finite groups. Using theorem above as
another characterisation, one can extend the definition to infinite groups.

(2) We now have two tools, Lemma 5.1.11 and theorem above, to decide if a given group is soluble.

5.3. Examples of a soluble group.

Theorem 5.3.1. Every subgroup of a finite soluble group is soluble.

Proof. This follows immediately from remark after Definition 5.2.8 and Theorem 5.2.10. □

Theorem 5.3.2. Every group of order pn where p prime and n ∈ N is soluble.

Proof. Let G be such group and we prove by induction on n. The base case is trivial since any group of
prime order is abelian, so soluble, so suppose n > 1 and statement is true for any smaller n. Denote Z(G)
by Z. Note that Z is normal by definition, abelian so soluble, and |G/Z| < |G| since Z is not trivial by
Theorem 2.2.13. So G/Z is soluble by inductive hypothesis, hence by Lemma 5.1.11 G is soluble. □

Example 5.3.3 (How far can we push this?). (1) Let G be a group of order 2pn. If p = 2 then G is
soluble by theorem above. If p is odd, let P ∈ Sylp(G), then |G : P | = 2 so P ⊴ G. Also, P is
soluble by theorem above and G/P ∼= C2 is soluble, hence by Lemma 5.1.11 G is soluble.

Week 10, lecture 3
(2) Say |G| = 4pn. Is G soluble? If p = 2 then again by theorem above G is soluble, so suppose p is

odd. Now we know
• S4 is soluble (see sheet 5 Q3).
• Let G act on X = G/P where P ∈ Sylp(G) by left multiplication, then ker(G,X, ·) ≤ P (see

sheet 2 Q9). By Lagrange’s, ker(G,X, ·) has p-power order, so it’s soluble by theorem above.
• G/ ker(G,X, ·) ∼= a subgroup of S4 by 2.2.3, so it’s soluble by 5.3.1.

So by 5.1.11 G is indeed soluble.
(3) If |G| = 3pn, then G is soluble by the same argument and the fact that S3 is soluble.
(4) Challenge: if |G| = 5pn, is G soluble? (Yes.) Note S5 is not soluble.

Theorem 5.3.4. Let G1, . . . , Gt be finite soluble groups. Then G = G1 × · · · ×Gt is soluble.

Proof by induction on t. The base case is a tautology, so suppose t ≥ 2 and result holds for smaller values
of t, i.e. X = G2 × · · ·Gt is soluble and we want to prove G = G1 ×X is as well. Consider the projection
homomorphism π : G1 ×X → X : (g, x) 7→ x. Then kerπ = G1 × {1X} ∼= G1 is soluble, and imπ = X is
also soluble. By the 1st isomorphism theorem, G/ kerπ ∼= imπ, so by 5.1.11 one has the desired. □

5.4. Nonexaminable: nilpotent group.

Definition 5.4.1. For a group G, define γ1(G) := G and for i ≥ 2, γi(G) := [γi−1G,G]. Then
γ1(G) ≥ γ2(G) ≥ · · · form the lower central series of G.

Definition 5.4.2. A group G is nilpotent if γn(G) = {1G} for some n ∈ N. The maximal c ∈ N : γc(G) ̸=
{1G} is called the nilpotency class of G.
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Example 5.4.3. (1) All abelian groups are nilpotent of nilpotency class 1.
(2) Let G = D8 = ⟨σ, τ⟩. Then γ2(G) = [G,G] =

〈
σ2

〉
= Z(G), and γ3(G) = [Z(G), G] = {1G}, so

D8 is nilpotent of nilpotency class 2.

Proposition 5.4.4. (1) If H ≤ G and G is nilpotent, then H is nilpotent.
(2) Let N ⊴G. Then γn(G/N) = γn(G)N/N . In particular, if G is nilpotent then so is G/N .

Exercise 5.4.5 (Before the proof). Let A ⊆ G. Show that ⟨A⟩N/N = ⟨B⟩ where B = {aN : a ∈ A}.

Proof. (1) By definition, if H ≤ G then γn(H) ≤ γn(G) ∀n ∈ N .
(2) We prove by induction on n. If n = 1 then γ1(G/N) = G/N = GN/N = γ1(G)N/N , so suppose

n > 1 and result holds for smaller values of n. Note [gN, hN ] = [g, h]N ∀g, h ∈ G. Thus
γn(G/N) = ⟨[xN, yN ] : xN ∈ γn−1(G/N), yN ∈ G/N⟩ by definition

= ⟨[xN, yN ] : xN ∈ γn−1(G)N/N, yN ∈ G/N⟩ by inductive hypothesis
= ⟨[xN, yN ] : x ∈ γn−1(G), y ∈ G⟩
= ⟨[x, y]N : x ∈ γn−1(G), y ∈ G⟩
= ⟨[x, y] : x ∈ γn−1(G), y ∈ G⟩N/N by exercise
= γn(G)N/N. by definition again

□

Corollary 5.4.6. Every finite nilpotent group is soluble.

Proof. First note that G(0) = G = γ1(G) and an easy inductive proof shows more generally

G(n−1) ≤ γn(G) ∀n ∈ N.
Hence, G nilpotent ⇒ γn(G) = {1G} for some n ∈ N ⇒ G(n−1) = {1G} ⇒ G soluble by Theorem
5.2.10. □

Proposition 5.4.7. If |G| = pn for p prime then G is nilpotent, i.e.
{finite groups of prime power order} ⊆ {finite nilpotent groups}

⊆ {finite soluble groups} ⊆ {finite groups}.
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