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Week 1, lecture 1

1. INTRODUCTION
Definition 1.0.1. A group is a pair (G, o) where G is a set and o : G X G — G is a binary operation
satisfying
(1) Associativity: (goh)ok =go(hok) Vg, h,k € G,
(2) Identity: 3 an element in G, denoted 1¢, such that lgog=golg =g Vg € G,
(3) Inverses: Vg € G, 3 an element in G, denoted g~*, such that gog™! =g 1 og=1g.
Remark. Implicit in parts 1 and 2 of above definition are

(1) An identity element in an associative binary operation is unique, justifying the notation and the
‘the’ before ‘identity’
(2) Similarly, inverses are unique in an associative binary operation, so we say the inverse of g

The number of elements in a group (G, o) is called the order of G, denoted |G|.

Example 1.0.2. Let G =Z. Then
(1) If we define o : G X G — G by goh =g+ h for g,h € Z then we know (G, o) is a group and
lg=0, gl =—-gVgeq.
1
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(2) For the same set, if we define go h = g x h then (G, o) is not a group for lack of inverses for
g € Z\{£1}.

Remark. (1) You may have been given a fourth axiom, closure, in previously seen definitions of a
group. The reason we omit that here is because it’s implied by definition of binary operation.
(2) If (G, o) is a group, o is often called the group operation.
(3) Given clear context, we will streamline our notation and simply write G in place of (G, o) and gh
in place of g o h.

Definition 1.0.3. Let G be a group.

(1) If g,h € G : gh = hg then g and h commute.
(2) If g and h commute Vg, h € G then G is abelian.

Example 1.0.4. (Z,+) is abelian.

Exercise 1.0.5 (Commuting elements in groups). Let G be a group.
(1) Suppose g*> = 1g Vg € G. Show that G is abelian.

Proof. Note that this implies Vg, h € G, (gh)~! = gh, but (gh)™! = h=tg~! = hg,so gh = hg. O
(2) Suppose g® = 1g Vg € G. Show that hgh~! and g commute Vg, h € G.

Proof. One has g°h = g7'h=2 = (h%g)~! = h%gh®g = gh®g = hg*h = hgh?g = h?g?h. Now

consider (gh)~!, which equals h%g? but also ghgh. Hence ghgh™' = ghgh? = h?g?h = hgh?g =

hgh1g, as desired. |

Next, we are going to look at two infinite families of examples of groups: 1. Symmetric groups and 2.
Linear groups.

1.1. Symmetric group.

Definition 1.1.1. Let X be a set, and define
Sym(X)={f:f:X — X is a bijection}

Define o : Sym(X) x Sym(X) — Sym(X) to be the usual composition of functions. Then (Sym(X), o) is
a group, called the symmetric group on X. An element of Sym(X) is called a permutation.

Remark (Sanity check). (1) Associativity is clear by inheritance
(2) lg=idx:x—=x
(3) For f € Sym(X), z € X, choose a unique y, € X such that f(y,) = x. Define g : X — X by
g(z) = ya, then g is a inverse for f.

We introduce cycle notation as a more compact way of writing permutations down.
Week 1, lecture 2

Definition 1.1.2 (Cycle notation). Let X be a set.

(1) Let aq,...,a, € X be distinct. The permutation f = (ay,...,a,) € Sym(X) is defined to be
fla;) = a1 for 1 <i<n-—1, f(a,) = a1, and f(b) =b for b & {a1,...,a,}. We call f a cycle
of length n (or an n-cycle).

(2) Two cycles (ay,...,a.), (b1,...,bs) are disjoint if {a1,...,a,} N{by,...,bs} = @.

(3) The empty cycle, written (), is the identity map which is also lgym(x)-

Remark (Important points about cycles). (1) Perhaps a tautology, but the empty cycle is thought
of as a cycle (of length 0).
(2) Recall that the group operation is composition of functions. So fg: X — X means do g first and
then f. e.g. X ={1,2,3,4,5}, so (3,4,1,2)(4,5) = (1,2,3,4,5).
(3) Cycle notation is not unique in the following sense: two distinct m-tuples of elements in a set X
can represent the same cycle, e.g. (1,2,3,4,5) = (3,4,5,1,2).
Theorem 1.1.3. Let X be a finite set. Then
(1) [Sym(X)| = X!,
(2) Every element F' € Sym(X) can be written as product of disjoint cycles. Moreover, the decom-

position is unique in the sense that if F' = f--- f. = g1 ---gs where f;, g; are disjoint cycles of
length > 1, then r = s and {f1,..., fr} ={91,- .-, 9}
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Proof (nonexaminable). (1) Write X = {z1,...,2,} where n = |X| and define
X(n):={(a1,...,an) 1 a; € X, a; # a; for i # j}.

Define a bijection 6 : Sym(X) — X(n) by 0(f) = (f(x1),..., f(x,)). for f € Sym(X), observe
(a) 6 is well-defined, since f is a bijection, so f(x;) # f(x;) for i # j.
(b) In the same way, 0 is injective. Indeed, if 8(f) = 6(g) then f(z;) = g(z;) Vi by definition of
0,s0 f=g.
(¢) If (a1,...,a,) € X(n), then define f : X — X by f(z;) = a; for 1 < i < n. Clearly,
f € Sym(X) and 0(f) = (a1,...,a), so 8 is surjective.
It follows that [Sym(X)| = | X (n)| = nl.
(2) Let f € Sym(X). If f = idx then f = () so it’s a cycle. Now suppose f is not idx. Let
Y ={x € X : f(x) # «}. Note that since |[Sym(X)| is finite by 1., In € N such that f™* =idx.

In particular, if we fix a1 € Y, then we may define m; := min{m € N: f™(a1) = a1} since
the set is nonempty. Now, for 2 < i < my, define a; := f(a;,—1). Y ={ay,...,am, }, then by
definition of cycle, one has f = (a1,...,am)-

Now suppose Y\{a1,...,am,} # &. Choose ap,+1 € Y\{a1,...,am,}, and define my :=
min{m € N : f™(am,+1) = a@m,+1}. For m; +2 < i < mg, again define a; := f(a;—1), then if
Y ={a1, ..., 0m,sQmy+1y---am, }, one has f = (a1, ..., am)(@mi1, .., am,). If not, we continue
inductively. Since X is finite, this must terminate, and when it does f will be a product of disjoint
cycles. The uniqueness follows from the algorithm immediately.

([l

1.2. Linear group.
Definition 1.2.1. F' is a field and n € N. We define
GL,(F):={A: A an invertible n x n matrix over F'},

a group with matrix multiplication as operation. This is called general linear group of dimension n over F'.
Week 1, lecture 3

Remark (Useful things from Algebra I, II for studying general linear groups). (1) Each field F' has
an additive and multiplicative identity Op and 1p. Given clear context, they will be denoted
simply 0 and 1 respectively.

(2) An n x n matrix A over F is invertible iff det A # 0 iff rows (or columns) of A are linearly
independent.

(3) If F is a finite field, then |F| = p/ for some prime p and f € N. Moreover, for each prime p and
each f € N, 3! a field (up to isomorphism) F : |F| = pf. p is called the characteristic of F, and
satisfies that pa = 0 Vo € F.

(4) If F is a field then F* := F\{0} is a group with multiplication as group operation inherited from
F.

Exercise 1.2.2. (1) Let X be a set. Show that Sym(X) is abelian iff | X| < 2.
(2) Let F be a field. Show that GL, (F) is abelian iff n = 1.

Theorem 1.2.3. Let F be a finite field with |F| = q. Then |GL,(F)| = q(g) H(qz —1).

i=1
Proof (nonexaminable). See sheet 1. O
1.3. Order of elements.

Definition 1.3.1. The order of g € G, denoted |g|, is defined |g| := min{n € N: ¢" = 15}. If the set is
& then |g| := oo.

Example 1.3.2. (1) Let X be a set and let f = (ay,...,as) € Sym(X). Then |f| =m.
(2) Let F be a finite field of order p/ where p prime, G = GLo(F), and o, 3 € F*. Observe that

696 -6 )

Soif g = <é ?) then g™ = (é nla)’ so |g| | p (we’ll see later about this implication), so

lg| = p.
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n (o O\ (o™ 0
9 =\o g) “\o p

So |g| = lem(m, k) where m = |a| and k = |3] as elements of F*.

Also,

Remark. (1) Forge G, (g")~ ! = (g_l)n, so we write g7 := (g_l)n. In particular, |g
(2) If g€ G, n=|g| and n |, then g' = 1.

1 =1gl.

Lemma 1.3.3. Let a,b € G of finite order. Then

(1) If I € N, then a! = 1 iff |a | L.
la]
2) Let m € N, then [a"| = ——————.
: 1= ed(alm)
) If a,b commute then |ab| | lem(|al, |b|).
) If a,b commute and a' = b’ Vi,j € N only when they are both 1 (i.e. (a) N (b) = {1}) then
|ab| = lem(|al, |b])-

(
(3
(4
Proof. (1) < is mentioned. =: suppose a' = 1. By Euclidean division, we can write | = gla| + r for
some 7 € [0, |a]). Then 1 = a' = a?**" = ¢, which contradicts minimality of |a|.

(2) Suppose first that m | |a|. Then one can write |a| = ms, so a™ =1 < |a| | ml by 1 < lal | 1.
m

Hence the least positive integer [ : a™ =1 is %.
Now let k& = ged(|al, m). We write m = ks, then am'# = glals = 1, and by 1 one has |a™] | %
To complete the proof it suffices to show that % < |a™|.
Week 2, lecture 1
By Bézout’s lemma, 3s,t € Z : k = s|a| + tm, so a* = a®loFt™ = (glol)sq?™ = ¢¥™. Then
at™e”l = ((@™)l*™1))t = 1* = 1. This implies |a*™| | a™ by 1. So Iik‘ = |a*| = |atm]| | |[a™|.
(3) Let I :=1lcm(|al,|b]). Then (ab)! = a'bl =1 x 1 =1, so by 1. |ab| | L.
(4) Let k := |ab|. Then k | [, but also, 1 = (ab)* = a*b* so a* = (bil)k and by assumption both sides
are 1. So |al,|b| | k, so I | k, hence k = I.
(|

Exercise 1.3.4. (1) Let h,g € G. Show that ’hgh_l‘ =|g|.
(2) Let I,m,n > 2 € N. Show that 3G with a,b € G : |a| =, |b] = m, |ab] = n. Also:
(a) Show that G can be finite.
(b) Show that one can replace I, m,n > 2 by {,m,n > 1.
Key hint: A 2 x 2 matrix over C with distinct eigenvalues is diagonalisable. Now exploit result of
1st exercise.

1.4. Subgroup and coset.

Definition 1.4.1. A nonempty H C G is a subgroup of G, denoted H < G, if

(1) 1lge H

(2 he H=hteH

(3) hi,ho € H = hih, € H
Definition 1.4.2. For a group G and g € G, define (g) := {¢™ : n € Z} which is called the cyclic subgroup
of G generated by g. If G = (g) then G is cyclic and g is a generator for G.

Lemma 1.4.3. H C G where H nonempty. H < G < hy,hs € H = hlhgl eH

Proof. = hi,ho € H=hy' € H= hih;' € H.
< ) H#2=>heH=hh'leH=1ge H
(2) he H=1gh™'=h"le H
(3) hi,ha € H=hy' € H= hy(hy") ‘hihy € H

Example 1.4.4. Let G = GLo(F) and

H— { <g ,(6)’) ca,f € FX} C G. sometimes called diagonal subgroup
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Definition 1.4.5. Let A C G be nonempty. The subgroup of G generated by A, denoted (A), is
{a5'-aim meN, a; € A, g; € {£1}}.

We want to show this is indeed a subgroup. Let h; = (Og ) € H where ¢ = 1,2. Then

Notation. If A= {g1,...,9:} then we often write (A) as {(g1,...,9¢).
Week 2, lecture 2

Exercise 1.4.6. Let G be a group and A C nonempty.

(1) Use Lemma 1.4.3 to show that (A) is indeed a subgroup of G.
(2) Write A = {g1,...,9s} and suppose g;g; = gj¢; Vi,j =1,...,s. Show that | (A) | <TI’_, |gi|-
(3) Suppose ¢? =1 Vg € G and G = (z,y) for some z,y € G.
(a) Show that if p =2, |G| < 4.
(b) Show that if p = 3, |G| < 3.
(¢) Fields-medal-worth: If p = 5, is G finite?
Definition 1.4.7. The left coset of H < G with respect to g € G is the set gH := {gh : h € H}. The
right coset is defined similarly.

gH is not a subgroup unless g € H since in general the identity is not there.

Lemma 1.4.8. Let H < G and g,k € G. The following are equivalent:
(1) kegH
(2) kH =gH
(3) go'ke H

Proof. First note that if h € H then hH = H by virtue of the fact H < G.

Now k € gH = k = gh for some h € H = kH = ghH = gH, so 1 implies 2. The other two implications
are almost identical. O

Lemma 1.4.9. Let H < G. For ¢1, 92 € G, say that g1 ~g g2 < g1 H = goH. Then ~p is an equivalence
relation.

Proof. The three conditions reflexivity, symmetry and transitivity follow immediately from definition. [J

Corollary 1.4.10. Let H < G.

(1) If g1, 92 € G, then either g1 H = goH or g¢1H N g2 H = @.
(2) The set {gH : g € G} of left cosets is a partition of G, i.e. if g;H for i € I are distinct left cosets
of H in G then

il
Proof. {gH : g € G} is precisely the set of equivalence classes under ~r, so the results follow immediately.
O

Theorem 1.4.11 (Lagrange’s). Let G be a finite group and H < G. Then |H| | |G|.
Proof. Let g1 H, ..., g:H be distinct left cosets of H in G. By Corollary 1.4.10,

t t
| |g:H| =D lg:H],
=1 =1

and one also has |[gH| = |H| Vg € G since gH — H defined by gh — h is a bijection. Hence |G| =t|H|. O

G| =

Definition 1.4.12. (1) As in the context of above, we write G/H := {gH : g € G}.
(2) |G/H]| is called index of H in G, denoted |G : H|. By Lagrange’s theorem if G is finite then
gl = 16l
G H| = 7.
Corollary 1.4.13. If G is finite and g € G, then |g| | |G]|.

Proof. This follows from the fact | (g) | = |g| and Lagrange’s theorem. O
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1.5. Normal subgroup and quotient group. In general G/H is not a group, which is the motivation
of this section.

Lemma 1.5.1. Let H < G, g € G. Then gHg™ ! = {ghg*1 the H} <G.

Proof. We use Lemma 1.4.3. Clearly gHg™' # @ since 1¢ € gHg™'. Now let = gh1g~ ", y = ghaog™!
where h1,he € H. Note that hihy € H since H < G. Then y~! = gh;lg_1 SO

vyt =ghig 'ghy g™t = ghihy'g™! € gHg ™"

Definition 1.5.2. (1) H <G is normal in G if gHg™! = H ¥g € G, denoted N < G.
(2) The normaliser of H < G is defined as

Ng(H):={g€G:gHg ' = H}.

Exercise 1.5.3. (1) If H < @, show that Ng(H) < G.
(2) {1¢}, G are always normal.

Week 2, lecture 3
Definition 1.5.4. G is simple if {15} and G are the only normal subgroups of G.

Example 1.5.5. e 7/pZ for any prime p (by Lagrange’s)
e A, forn>5

Notation. AB :={ab:a € A,b € B} where A, B C G. It’s a subset but not a subgroup of G in general,
even if A, B < G.
Lemma 1.5.6. Let N <G and g,h € G. Then (¢N)(hN) = ghN.
Proof. C: Let x = gny € gN, y = hng € hN where n1 2 € N. Then
zy = gnihng = ghh™*nihny € ghN
since h~'n1h € N by definition of a normal subgroup.
D: Let x = ghn € ghN where n € N. Then
z = (g91a)(hn) € (gN)(hN).
|

Definition 1.5.7. Let N <G.
(1) The natural binary operation on G/N is o : G/N x G/N — G/N given by (¢N) o (hN) = ghN.
(2) (G/N,o) is a group, called the quotient of G by N.
Checking this is indeed a group is left as an exercise.

1.6. Homomorphism.

Definition 1.6.1. Let G, H be groups.
(1) A map 6: G — H is a homomorphism if 6(g192) = 0(g1)0(g2) Vg1, 92 € G.
(2) A bijective homomorphism is an isomorphism. If for G, H, 30 : G — H an isomorphism, then G
and H are isomorphic, denoted G = H.
(3) Let 0 : G — H be a homomorphism. The kernel of 6, denoted ker 6, is defined to be {g €
G : 0(g) = 1y}, which is a subgroup of G. The image of 6, denoted im#@, is defined to be
{0(9) : g € G}.

Example 1.6.2. Let F be a field, G = GL,(F) and H = F*. Then detG — H is a (surjective)
homomorphism, since det AB = det Adet B VA, B € GL,(F). Also
kerdet = {A € GL,(F) :det A=1p} =: SL,(F).

Theorem 1.6.3 (1st isomorphism theorem). Let § : G — H be an homomorphism. Then
(1) ker0 < G.
(2) im6 < H.
(3) G/kerf = imé6.

Theorem 1.6.4 (2nd isomorphism theorem). Let H < G and N < G. Then
(1) HN = NH <G.
(2) HOWN < H.
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(3) HN/N =2 H/(HNN).
Theorem 1.6.5 (3rd isomorphism theorem). Let N, K <G : N < K. Then
K/N<G/N and (G/N)/(K/N)=G/K.
Theorem 1.6.6 (Correspondence (or 4th isomorphism) theorem). Let N < G. Then the map
f{J: N<J<G}—=>{X:X<G/N}
given by
J— J/N
is a bijection.
Proof. Let A:={J: N <J <G} and B:={X: X <G/N}. Clearly J/N < G/N.
Suppose J1 2 € A and f(J1) = f(J2), and let z € J;. Then
aN € f(J1) = f(J2) = J2/N,

so xIN = yN for some y € J,. Since x € xN, x = yn € Jo for some n € N. It follows that J; C Jo, and
symmetrically Jy C J;. Hence f is injective.

Let X € Bandset Y = {y € G : yN € X}. One can see that ¥ < G since y; 2N € X =
(i N)(yeN)"' € X = y195'N € X, so y1y5 - € Y by definition, hence ¥ < G. Since N < Y
(nN =N =1g/y € X Vn € N) one has y € A. Since f(Y) = X, f is surjective. O

Week 3, lecture 1

2. GROUP ACTION
2.1. Permutation group.
Definition 2.1.1. Let X be a set. G < Sym(X) is called a permutation group on X.
Definition 2.1.2. (1) Let g € Sym(X). The support of g is defined
supp(g) == {z € X : g(z) # z} C X.
(2) Let G < Sym(X). The support of G is defined
supp(G) = {zx € X : g(z) # x for some g € G} C X.

Example 2.1.3. (1) supp(Sym(X)) = X.
(2) supp({lg}) = &
(3) X ={1,2,3,4,5,6} and g = (1,5,6). Then supp(g) = {1,5,6}.
(4) X =11,2,3,4,5} and g = (1,2)(3,5). Then supp(g) = {1,2,3,5}.

Remark. As the above examples show, one can read off the support of g € Sym(X) from its decomposition
as a product of disjoint cycles. More precisely, if f € Sym(X), f = f1... fm is such decomposition where
fi= (ail, .. .,aiti). Then

—~

supp(f) = {ai; : 1 <i<m, 1 <j <t}

Exercise 2.1.4. Let H,G < Sym(X

(1) Show that H < G = supp(H
(2) Deduce that supp(H) N supp
(3) Is the converse of above true?

No, counterexample: X = {1,2,3}, G =((1,2)), H = ((2,3)).
(4) What if gh = hg Vg € G,h € H?

C supp(G).
G) = HNG = {ISym(X }

A\/\_/

Theorem 2.1.5. (1) Disjoint cycles commute.
(2) Let f € Sym(X) and f = f1... fin as a product of disjoint cycles f;. If m =1 then |f] is length
of fi. If m > 2 then |f| = lem(|f1l, ..., |fm])-
(3) If f=(a1,...,fr) € Sym(X) is a cycle and g € Sym(X), then 9f := gfg~! = (g(a1), ..., 9(a,)).
Proof (nonexaminable). (1) Let f = (a1,...,a), g = (b1,...,bs) be disjoint cycles. One needs to

prove (fog)(z) = (g0 f)(z) V& € X.

Suppose z € {ai,...,a,}, which implies x # b; by assumption. So g(z) = = by definition of
cycles, hence f(g(x)) = f(z). Also, again by definition, f(z) € {a1,...,a,}, so f(x) # b;, hence
g(f(x)) = f(x). The argument for case x ¢ {a1,...,a,} is symmetric.
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(2) The case m = 1 is seen before in section 1.3. We prove the claim by induction on m. Suppose
m > 2 and all precedents are true. Let g = f1 ... f,n_1. We now need three things to finish the
proof:

(a) Write f; = (ai;,...,a;, ). Then supp(g) = {a;; : 1 <i<m—1, 1 <j <t;} and supp(fm) =
{am, 1 <j < tw}. By assumption supp(g) 1 supp(fm) = @ 50 (9) O {fm) = {1sym(x)} by
exercise above.

(b) g and f,, commute by 1.

(c) lg] =lem(| f1],---,|fm—1]) by inductive hypothesis.

By Lemma 1.3.3.4 one has the desired.

(3) Let b; := g(a;) and observe that (gfg—1)(b;) = gfg’l(g( i)
let # € X\{b1,...,bn}. Then g~ (z) € X\{g~'(b1),...,
g Hz) € X\{a1,...,am}, so f(g~1(x)) = !

= g(f<al)) = g(ai+1) = b7;+1. Now
~1(b,,)} since g is a bijection, i.e.

g (x), and gfg~"(z) = g(g7"(z)) = =.

|
Week 3, lecture 2
Recall that a subgroup of G generated by a nonempty A C G is defined to be

(Ay :={al'---aim :meN, g € {£1}, a; € A}.

Exercise 2.1.6. Let A C G be nonempty.
(1) Show that
(4) = ﬂ
ACH<
In particular, if H < G and A C H then (A) < H
(2) Recall that given H < G, Ng(H) := {g € G : gHg_1 = H}. Suppose g € G and gag™! €
(A) VYa € A. Show that g € Ng((A)). (One only needs to check element in generating set instead
of the whole subgroup for normaliser.)

Definition 2.1.7. Let n € N, n > 3 and set X := {1,...,n}. Define 0,7 € Sym(X) by o := (1,2,...,n)
and 7 = HEZ{QJ (i,,n—i+1) = (1,n)(2,n —1)---. The dihedral group of order 2n is the permutation
group on X defined by Dy, := (0, 7).

This is the rigorous (algebraic) definition of Dy, but it can also be thought of group of symmetries of
a regular n-gon.

Example 2.1.8. (1) n=38, o =(1,2,
(2) n=7,0=(1,2,3,4,5,6,7), 7 = (

Theorem 2.1.9. Let n € N, n > 3.
(1) |D2n‘ = 2n.
(2) N := (o) < Dy, and |N| =n.

Proof. (1) See sheet 2.

(2) First note that Tor~! = (7(1),...,7(n)) = (n,n —1,...,1) = o~ by Theorem 2.1.5.3 and
definition of 7. Also clearly coo~! = 0. Now if A := {0} then we have shown 70,7 o € (A), so
by Exercise 2.1.6.2, 7,0 € Np,, ((4)). Hence ({r,0}) = Da,, C Np,_ ((4)), i.e. (A) < Dy,. Also
INI=[{o) | = lo] = n.

7= (1,8)(2,7)(3,6)(4,5).

]

Definition 2.1.10. Let X be a finite set.

(1) Let f € Sym(X) and write f = f1 --- fn, as product of disjoint cycles. f is even if the number of
cycles of even length in {f1,..., fm} is even. Otherwise f is odd.
(2) The alternating group on X, denoted Alt(X), is defined {f : f € Sym(X) even}.

Example 2.1.11. (1,2,3,4) € Sy is odd, (1,2)(3,4,5) € S5 is odd, (1,2)(3,4,5,6) € Sg is even.
Proposition 2.1.12. Alt(X) < Sym(X) and [Sym(X) : Alt(X)] =2, i.e. [Alt(X)] = |XT"

Proof. See sheet 2. O
Proposition 2.1.13. If X,Y are finite sets with | X| = |V, then Sym(X) = Sym(Y).

Proof. Let 8: X — Y be a bijection. Define 6 : Sym(X) — Sym(Y) by f + Bf8~L. It’s then clear that
f is an isomorphism. |
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Week 3, lecture 3
Recall that if G = (B), H = (A), then H <G < bab~! € HVa € A,b € B.

2.2. Group action.

Definition 2.2.1. Let G be a group and X a set. An action of G on X is amap - : G x X — X such that
(1) lgrx=a VzxeX
(2) (gh)-z=g-(h-x) Vg,heG, ze€X

We say G acts on X and X is a a G-set.

Example 2.2.2. (1) The action of G on itself by left multiplication: let X := G and define - :

GxX —-Xbyg-z:=gzx, g€ G, € X. Note that by definition of a group,
(a) lgrz=1lgz=2 VreX,
(b) (gh) -z = (gh)x =g(hz)=g-(h-x) Vg, heG, v X.

(2) The action of G on itself by conjugation: again let X := G. Define - : Gx X — X by g-x := grg~!.
Note that
(a) 1g-z = 1(;3:1(_;1 =x VeelX,
(b) (gh) -z = (gh)x(gh)~" = gheh~*g~' =g - (hah™') = g- (h-x).

(3) The action of G on the set of left cosets of H < G: let X := G/H = {gH : g € G} and define
:GxX — X byg-kH =gkH. To see it’s indeed an action is similar to 1.

Proposition 2.2.3. Let G be a group acting on a set X. Define ¢ : G — Sym(X) by ¢(g)(z) :=g¢ - x.
Then ¢ is a homomorphism. (Then G/ker ¢ = H where H < Sym(X)).

Proof. Let g,h € G. ¢ is indeed a bijection by definition of an action. It suffices to show ¢(gh) = ¢(g)op(h).
Let z € X, then

P(gh)(z) = (gh) - w =g - (h-z) = 6(9)(¢(h)(x)) = (&(g) 0 ¢(h))z.

Definition 2.2.4. Let ¢ be the same map as above.
(1) The kernel of action of G on X, denoted ker(G, X, -), is defined to be

ker(G, X, )=ker¢p ={geG:g-z=xVr € X} 1G.

(2) The image of the action, denoted im(G, X, ), is defined to be im ¢ < Sym(X).
(3) The action is trivial if ker(G, X, ) = G and faithful if ker(G, X,-) = {1g}.

Example 2.2.5 (The same ones from 2.2.2). (1) ker(G, X, ) = {1g}, a faithful action.
(2) ker(G,X,-) ={g € G:grg ' =z Vx € X} = Z(G). The action is trivial iff G is abelian.
(3) Observe that the action is trivial & gxH = H Vg,x € G < H = G, i.e. it’s nontrivial as long as
H is proper. This is useful: let G be a nonabelian finite simple group. We claim G cannot have a
subgroup of index 3 (the case that index is 2 is obvious since if that’s true then it has a nontrivial
proper normal subgroup, so not simple).

Proof. Suppose |G : H| = 3. G acts on X := G/H and by the above H is proper, so K :=
ker(G, X, ) 9 G is proper. But G is simple so K = {1} and one can then say G & G/K =
some subgroup of S3. Since it’s nonabelian it must be the whole group. But S5 is not simple, a
contradiction. O

Week 4, lecture 1

Remark. We saw last time that Proposition 2.2.3 is particularly useful when G is a finite simple group
and H is a subgroup of G such that |G : H| = n, in that it implies that G is isomorphic to a subgroup of
Sp. This leads to the following more general result.

Proposition 2.2.6. Let G be a group acting faithfully on a set X. Then G is isomorphic to a subgroup
of Sym(X).

Proof. This follows immediately from the definition of faithful and the 1st isomorphism theorem. ([

Definition 2.2.7. Let G be a group acting on a set X and = € X.
(1) The orbit of x is orbg(x) :={g-x: g € G}.
(2) The stabiliser of z is stabg(z) :={g € G: g -z = z}.

Proposition 2.2.8. (1) stabg(z) < G.
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(2) ker(G,X,-) = () stabg(z).
zeX

Proof. See sheet 2 Q8. O
Example 2.2.9 (From 2.2.2.2). Fix x € X = G. One has
orbg(z) = {gzg™' : g € G},
called the conjugacy class of x in G, sometimes denoted “z. Also
stabg(z) = {g € G : grg~ ' =z},
called the centraliser of x in G, sometimes denoted Cg(x).
Theorem 2.2.10 (Orbit—stabiliser). Let G be a finite group acting on a set X and = € X. Then
|G : stabg(z)| = |orbg ()|,
or alternatively
|G| = |stabg(z)||orbg ()]
Proof. Let S = stabg(z). Recall G/S = {¢S : g € G} and |G : S| = |G/S|. Define
f:G/S — orbg(z) by ¢S +— g - .
It suffices to show f is bijective.

(1) fis well-defined and injective: gS = kS k™ lge S kg a=r &g 2=k -2 & f(95) =

f(kS);
(2) For g-x € orbg(x) then f(gS) =g -z, so f is surjective.

Corollary 2.2.11. (1) For z,y € X, either orbg(z) = orbg(y) or orbg(z) Norbg(y) = 2.
(2) {orbg(x):x € X} is a partition of X.
(3) |orbg(x)| divides |G].
Proof. 1, 2. Define a relation on X x ~ y if y = g - x. It follows from the definition of an action that ~

is an equivalence relation and the equivalence classes are {orbg(z) : x € X }.

3. Immediate from the theorem.
O

Theorem 2.2.12 (Cayley’s). Let G be a finite group. Then G is isomorphic to a subgroup of Sym(X)
for some set X.

Proof. By Example 2.2.2.1, G acts on itself by left multiplication, and ker(G, X,-) = {1g}, i.e. the action
is faithful. The result then follows from Proposition 2.2.6. (]

Theorem 2.2.13. Let p be prime and G a group of order p™ where n € NT. Then |Z(G)| > 1.

Proof. Observe that

g€ Z(G) s grg =z Ve € G xgr!

=g < |orba(g)| = 1.
Week 4, lecture 2

Let orbg(z1), . . .,0orbg(z:) be the orbits of G in its action by conjugation on X = G (Example 2.2.2.2).
Assume WLOG that |orbg(z;)| =1 for 1 < ¢ < s and |orbg(x;)| > 1 for s < ¢ < t. By the observation
above, one then has Z(G) = {x1,...,2s} and in particular, |Z(G)| = s. If s < i <, then |orbg(z)| = p*
for some a; € N by Corollary 2.2.11.3. Now, by Corollary 2.2.11.2,

¢ t
Gl =1X| =Y brba(z)| =s+ > p% =p",
=1

1=s+1
so |Z(G@)| = s = 0mod p, hence |Z(G)| # 1. O
Remark. Many groups we shall see in the course will have a trivial centre, e.g. S,, for n > 3 and Dy, for
n > 3. Also, a nonabelian finite simple group is not of order p™.
Corollary 2.2.14. Let p be prime and G a group.

(1) |G| = p? = G is abelian.
(2) |G| = p® = either G is abelian or |Z(G)| = p.
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Proof. We need two facts:
(1) All groups of order p are cyclic (immediate from Lagrange).
(2) If G is nonabelian then G/Z(G) is not cyclic (see sheet 2 Q1).
It follows that if G is nonabelian then |G/Z(G)| # p for a prime p. Now Theorem 2.2.13 implies
(1) |G| =p*=|Z(G)| = p* = Z(G) = G = G is abelian.
(2) |G| =p* = |Z(G)| = p or p* and the desired result is clear.
([

Theorem 2.2.15 (Cauchy’s). Let G be a finite group and p a prime divisor of |G|. Then G has an
element of order p. Furthermore, number of elements of order p is congruent to —1 mod p.

Proof. Define
X = {(glv"-ygp) EGp:gl"'grzlg}.

Note that
x:(glv,gp)eXilgzglgp
:>g7,_1gl_l]‘Gglgl:gz_lgl_lglgpglgz
le:gi_‘rl.-.gpgl...gi
:>(g’i+13'~~7gp,g1,...,gl')EX.
Now define

C := (o) < S, where 0 = (1,2,...,p)
and the action
G COXxX =5 X by ot (g1, 0p) = (Gitts s Gpr g1y -5 Gi)-
(Check - is indeed an action.) Now
(1) Ifg € G and g* = 1g then (g,...,9) € X,and 0*-(g,...,9) = (g,...,9) Vi, i.e. lorbc((g,-..,9))| =
1.
(2) We claim that the converse is true: if = satisfies |orbe(z)| = 1 then = = (g,...,g) for some
g € G: g =1¢. Indeed, say z = (g1,...,9p). It suffices to show g1 = g¢; Vi. By the Orbit—
stabiliser theorem, |orbe(z)| = 1 implies stabe(z) = C, i.e. Vi,

(gla te- agp) = Ui_l(gh <o 7gp) = (gla <y 9py G915 - - agi—l)a
which gives the desired.

(3) Note that if (g1,...,9,) € X then g, = (g1 gp—1)"*. We claim |X| = |G|P~!. Indeed, define
f:X =GP tby (g1,---,9p) = (g1, .-, 9p—1). It suffices to show that f is bijective since then
|X| = |GP~| = |G|P~L. To see f is injective, note that

fllgrs--v9p)) = f((h1,.. . hp)) =>gi=hifor 1 <i<p-—1
=g, = (g1 ~gp—1)_1 =(hy--- hp_1)_1 =hy
= (gl,...,gp) = (hl,...,hp).
To see f is surjective, note that for every (z1,...,2,-1) € GP~! one can set x,, := (z1 - zp_1) "},
then (z1,...,2,) € X and it satisfies f((x1,...,2p)) = (T1,...,2p_1).
By Corollary 2.2.11.3, all orbits not of size 1 have size p. Let s be number of distinct orbits of size 1, t be
number of distinct orbits of size p and r be number of elements of order p in G. By parts 1 and 2, s = 147

where 1 corresponds to the trivial element (1g,...,1g). One can then write |G[P~! = | X| =1+ r + pt,
and since p | |G|, r = —1mod p. In particular, r > 0. O

Week 4, lecture 3

Tool 2.2.16 (Analysing element orders in a finite group). Let E,(G) := {z € G : |z| = p} where p prime.

Then

(1) |E,(G)] = —1modp (Cauchy’s theorem)

(2) |Ep(G)] > |G : Cq(x)| Vx € E,(G) by 1.3.4.1 and the Orbit-stabiliser theorem.

(3) If r # p is a prime and G has no element of order pr, then |Cg(x)| is not divisible by r for
z € E,(G) by Lemma 1.3.3.4 and Cauchy’s theorem.

Example 2.2.17. Let G be of order 48 with no elements of order 6. We claim |E3(G)| > 17.

Proof. Let x € E3(G). Tool 2.2.16.3 implies |C(z)| is not divisible by 2. Since |Cg(x)| | 48, it must be
|Ca(x)| = 3. Then by Tool 2.2.16.2 |E5(G)| > 16, and since |E5(G)| = —1mod 3, |E3(G)| > 17. O
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Proposition 2.2.18. Let G, H, X be as in Example 2.2.2.3 and K < G. Then |KH| = \lﬁ‘r‘ﬂ

Proof. Since G acts on X and K < G, K acts on X as well. Let x = H € X. Then
stabg(z)={ke K:kH=H}={ke K: ke H} = KNH,

and
|K : KN H|=|orbg(z)| = |{kH : k € K}|.
On the other hand,

|KH|=|() kH| = |{kH : k € K}||H| = |K : K" H||H]|.
keK
|

Corollary 2.2.19. Let G, H, K as above. Then

|G: HNK|<|G: H||G: K|.
Proof.

(H[| K] |G|

KH G

|HﬂK| =| I=l6l= |G\

and rearranging gives the desired. O

2.3. Fixed point.

Definition 2.3.1. Let G be a group acting on a set X and g € G.

(1) An element x € X is a fized point of g if g- & = x. The set of fixed points of g is denoted
fixx(g) ={xeX:g -z =2z}
(2) g is fixed point free if fixx (g) = @.

Lemma 2.3.2 (not Burnside’s'). Let G be a finite group acting a finite set X. Then

{orbg(z) :w € X} =r= > |fixx(g
IG\ =

Informally, the number of orbits = the average number of fixed points.
Proof. We will use Corollary 2.2.11.1 and 2. Let
A={(g,z) : g€ Gx e X,g-x =z}

We count |A] in two different ways (double-counting method to show equality).

(1)
Al = |fixx(9)

geqG
(2)
G
=T leeGiga=atl= 3 et = 3 oy
reX zEX
-y ¥ |G\ B> |G|
i=1 yEorbg (z;) |OI'bG i=1 yeorbg (v |OTbG (LL'Z)‘
Gl
= orb = rlG
Z‘ al@ \orbg( Bl G|
where orbg (1), . .. ,orbc(a;r) are distinct orbits.

O

Corollary 2.3.3. Let G, X and r be as in above lemma. Suppose |X| > 1 and r = 1. Then G has a fixed
point free element.

IWwilliam Burnside (1852-1927) was known as a pioneer in the systematic study of finite groups and indeed stated and
proved this lemma, but later people found out this equality was known in as early as 1845 to Cauchy, so it’s a lemma that is
not Burnside’s.
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Proof. By definition one has |fixx (1¢)| = | X|. Now

1 1
1::R§I§£:\ﬁxx(g”::]zﬂ, | fixx (1a)| + Y |fixx(g)|

geG 9#lc
So if G doesn’t have any fixed point free element then |fixx(g)] > 1 Vg € G and
1 G
1> —(X[+|G]-1) > = =1,
|G| G
a contradiction. O

Week 5, lecture 1

3. SYLOW THEOREMS

Remark (Philosophy). In chapter 1, we saw Lagrange’s theorem. Question: does the converse hold? i.e.,
if I | |G|, does G necessarily have a subgroup of order [?

(1) A counterexample would be A4 with |A4| = 12, which does not have a subgroup of order 6 (use
Tool 2.2.16.3).

(2) In general, let G be a finite simple group of even order > 2. Then G has no subgroup of order
1GI/2.

Sylow theorems will prove that a partial converse holds by restricting [.

Notation. For the remainder of the chapter, we fix a finite group G and a prime divisor p of |G|. Also,

we write |G|, for the p-part of |G|, i.e. writing |G| = p"m where p t m we have |G|, = p".

Definition 3.0.1. Let H < G.

(1) H is a p-subgroup of G if |H| is a power of p.
(2) H is a Sylow p-subgroup of G if |H| = |G|,.
(3) The set of all Sylow p-subgroups of G is denoted Syl (G).

Example 3.0.2. (1) G = S; has order 24. Then |G|, = 23, |G|z = 3. One has {(1,2,3)) € Syl;(G)
and Dg = ((1,2,3,4),(1,4)(2,3)) € Syl,(G). Also ((1,2)) is a 2-subgroup but not a Sylow
2-subgroup.

(2) G = C,,. Then for each divisor d or n, G has a unique subgroup of order d. In particular, if p | n,
then [Syl,(G)| = 1. See sheet 2 Q3.

(3) G = GLo(F) where F is a field of order p. Then by Theorem 1.2.3, |G| = p@) Hf:l(pi -1) =

p(p—1)(p* —1). One has x = ((1) 1) € G with order p. Hence (z) € Syl (G). More generally,

|GL,(F)|p, = p(g) and U(n, F') (the set of upper triangular matrices with 1 on the diagonal) is a
Sylow p-subgroup.

Theorem 3.0.3 (Sylow theorems). Let G be a finite group with p a prime divisor of |G]|.
(1) (Existence) Syl (G) # @.
(2) (Conjugacy) All Sylow p-subgroups are conjugate in G.
(3) (Containment) Every p-subgroup of G is contained in a Sylow p-subgroup.
(4) (Number) [Syl,(G)| = 1 mod p.

3.1. Wielandt’s proof of Sylow theorems 1 & 4.
Lemma 3.1.1. Let p be prime and n,m € NT with ged(m,p) = 1. Then

(1) p| (p) for1<i<p-1
i

n

(2) (p Zln) = mmod p.
p

Proof. (1) Fix 1 <i<p-—1. Then

@) ! plp—1)---(p—it+1l)

i

dllp—4)! i(i—1)---1
Now let a:=(p—1)---(p—i+1), b=14l. Then

()= 5 =m=(2)=r1())
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but clearly ged(p,b) = 1, hence p | (p)
i
(2) Let F:=7/pZ ={0,1,...,p— 1} with usual addition and multiplication modulo p. Consider the
polynomial (1 + x)? € F[z].
Week 5, lecture 2

By binomial theorem,

(1+ap=>" (f)x =1+ 2P € Fla].

i=1
Then
142)" =(1+2)P) =1+aP)P =1+a" .
Inductively,
(142" =1+2"".

Even more generally,
(1+x)pnm = ((1+$)pn) = <1+Q§'pn> .

Binomial theorem then gives us the equality

p"'m p"m i_m m .
S ()= ()

. . s .
Comparing coeflicients of 2P * gives

and in particular for ¢ =1,

(pp;n> =m¢€F.

Translating this back to Z one has the desired.

Proposition 3.1.2. Sylow theorem 4. In particular, Sylow theorem 1.

Proof. As usual, write |G| = p"m where p { m and p™ =: |G|,. Let X := {S C G : |S| = |G|,}. Define
‘GxX —=>Xbyg-S:=9S=1{gs:sec S} Thisis indeed an action: see sheet 2 Q12. Let orbg(S;) be ¢
distinct orbits in X. By Corollary 2.2.11.2 and Lemma 3.1.1.2,

n t

m

(ppn ) =|X|= Z lorbg(s;)| = mmod p.
i=1

This means at least one |orbg(s;)| is not divisible by p. WLOG, suppose p t |orbg(S;)| for 1 <i <r and

p | |lorbg(S;)| for r < i < t. We claim:

(1) Fix ¢ = 1,...,r and denote S; by S for convenience. Then 3z € G : stabg(zS) = xS and
in particular xS € Sylp(G). Indeed, let s € S and set £ = s™, T := 2S. We want to show
stabg(T) = T. First note that 1 = 227! = 2s € T. Hence g € stabg(T) = ¢T = g = glg €
gT =T, so stabg(T) CT. Also, T € orbg(S), so orbg(T) = orbg(S). Hence

Gl p"m

p1 lorbg(T)| = |stabg (T)] N [stabe (T)]°

This implies p™ | |stabg(T')| by Lagrange’s theorem. But by construction, |T'| = p™, so it must be
that stabg(T) =T.
(2) 7= |Syl,(G)|. Indeed, for i =1,...,r we can take T; = x;S; € orbg(S;) such that T; = stabg(T5)
by previous claim. Now define
f:{orbg(T1),...,orbg(T;)} — Syl (G)
orbg(T;) — T;

[ is well-defined since orbg(7}) are distinct by construction and T; € Syl,(G) by first claim. Since
T; are distinct, f is injective. Now let P € Syl,(G). Then P € X, and

stabg(P)={g€ G:9gP =P} =P,
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50 |orbg(P)| = m which by definition is not divisible by p. Hence for some ¢ = 1,...,r, orbg(P) =

orbg(T;), so P € orbg(T;), i.e. P = ¢T; for some g € G. But g = glg € g7; = P and since

g '€ P, T; =g 'P = P. This proves f is surjective, hence bijective, hence the claim.
Therefore,

T t
rm+0="Y_lorba(Ti)| + > lorba(S;)| = |X|=mmodp
i=1 i=r+1

and since ged(m, p) = 1, we can do cancellation and have r = 1 mod p. (]

Week 5, lecture 3
3.2. Proofs of Sylow theorems 2 & 3.

Remark (Easy but useful facts). Let G be finite and p a prime divisor of |G|. Then

(1) PeSyl(G),ge G=gPg~! € Syl,(G).

(2) If |G| is a power of p then Syl (G) = {G}.

(3) By definition, a p-subgroup @ of G is a Sylow p-subgroup iff p1 |G : Q.
Proposition 3.2.1. Let G, p be as above and P € Syl (G), H < G. Then 3g € G : HNgPg~' € Syl (H).
Proof. Let X =G/P = {gP : g € G}. Then H acts on X by left multiplication (since G does) (Example
2.2.2.3). Consider the orbits and stabilisers. Fix P € X where « € G, then

stabg(zP) ={h € H : htP =xP}={h€ H:x 'haP = P}
={heH: 2 'haeP}={h€ H:hecaPx '} =HnNaPx "

As usual, let orbgy (21 P),...,orby (2, P) be distinct orbits and write |G| = p™m where p { m. We have

t t
ptm=|X|= ZbrbH(xiPﬂ = Z |H : (HNa;Px;)|
i=1 i=1

sopt |H : (H N xiPx;1)| for some i. We claim g := x; satisfies the desired. Indeed, HNgPg~! < gPg~!,
so by Lagrange’s theorem it’s a p-subgroup of H, hence by 3rd remark above it’s a Sylow p-subgroup of
H. |

Corollary 3.2.2. Sylow theorems 2 and 3.

Proof. 2. Let H,P € Syl(G). Then 3g€ G : H NgPg~' e Syl,(H) = {H} by previous proposition
and the 2nd remark above. So H = H N gPg~!, in particular H C gPg~!, but by assumption
|H| = |gPg~"|so H = gPg~".

3. Let H < G be a p-subgroup and P € Syl,(G). Then by exactly the same argument as above,
H C gPg~" € Syl (G).
([l

3.3. Consequences of Sylow theorems. Recall that if H < G then H < Ng(H) ={g € G: gHg ! =
Corollary 3.3.1. Let G, p be as above and P € Syl,(G).

(1) ISyL,(G)| = |G : Na(P)]-

(2) ISyL(G)] ]G = P.

(3) PAG & [Syl,(G)] = 1.
Proof. Let G acts on X := Syl (G) by conjugation (see sheet 2 Q15 that this is indeed an action).

(1) By Sylow theorem 2, Syl,(G) is explicitly {gPg~" : g € G} which by definition is orbg(P). Now

stabg(P) = {g € G : gPg~! = P} = Ng(P). The desired result then follows from Orbit-stabiliser

theorem.
(2) By Lagrange’s theorem and part 1, P < Ng(P) = |P| | |[Ng(P)| = |G : N¢(P)| | |G : P| =
ISyL, (G| | |G = P].

(3) We have PG & {gPg~" : g € G} = {P} & Syl,(G) = {P} & [Syl,(G)| = 1.

Corollary 3.3.2. Let G, p be as above and
Fo(G) ={zeG:x#1g, |z|=p"}.

Then
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(1)
FG)= | P&}

PESylp(G)
(2) |Fp(G)| = |G, — 1 with equality iff [Syl,(G)[ =1 (i.e. there is a normal Sylow p-subgroup).

(3) If |Glp = p, then [F,(G)| = [Syl,(G)[(p — 1).
Week 6, lecture 1
Proof. (1) Let
ze |J P}
PeSyl,(G)

Then |z| = p™ by Lagrange’s, and since  # 1 one has z € F,(G). We haven’t used Sylow yet.
Now let x € F,(G). Then (z) is a p-subgroup since its order is |z|, so (z) is contained in a Sylow
p-subgroup. The desired is then clear.
2, 3. See sheet 3 Q10, 11 respectively.
O

Example 3.3.3 (Applying 3.3.1 and 3.3.2). (1) Prove that a group of order 30 is not simple.

Proof. Suppose |G| = 30 and G is simple. Note |G| = 2 x 3 x 5. By Corollary 3.3.1.2 and Sylow
theorem 4, |Syl;(G)| | 6 and |Syl;(G)| = 1mod 5, i.e. |Syl;(G)| =1 or 6. If it’s 1 then by Corollary
3.3.1.3 G is not simple with P normal, a contradiction; so |Syl;(G)| = 6. Similarly, |Syl;(G)| = 10.
Now Corollary 3.3.2.3 says |F5(G)| =6 x 4 = 24 and |F3(G)| = 10 x 2 = 20, but we only have 30
elements. Hence G must be not simple. (Il

(2) Prove that a group of order 132 is not simple.

Proof. Suppose |G| = 132 = 11 x 22 x 3 and G is simple. Then similarly, |Syl,,(G)| | 12
and |Syl;;(G)| = 1mod11, i.e. |Syl;;(G)| = 1 or 12. But again G has no normal subgroup,
so [Syl;1(G)| = 12. Similarly, |Syl;(G)| = 4 or 22. Again, |F11(G)| = 12 x 10 = 120 and
|F5(@)| > 4 x 2=28. Now,

Fy(G) C G\F11(G)U F3(G) U {lg},
" |F5(G)] <132 -120 -8 — 1 = 3.

Corollary 3.3.2.2 says |[Fy(G)| > 22 — 1 = 3, so |F5(G)| = 3, hence there is a normal Sylow
p-subgroup, a contradiction with G being simple. O

3.4. 2 applications of Sylow theorems. In this section, we’ll look at a game with 2 versions.

e Version 1: Prove that a group G of order * is not simple. The 3 strategies are
(1) Immediately apply Corollary 3.3.1.2 and Sylow theorem 4 to try to get a contradiction. We
usually start with the largest p.
e.g. * =20 = 22 x 5. Then |Syl;(G)| = 1, an immediate contradiction.
(2) The F,(G)-strategy: for each p such that |G|, = p, use Corollary 3.3.2.3 to get a lower bound
on |F,(G)|. Since
Gl < > 1F(G)];
plIG|
we either get an immediate contradiction or we should further use Corollary 3.3.2.3 to get
one.
e.g. Example 3.3.3.
Week 6, lecture 2
(3) The homomorphism strategy: again begin by considering possibilities for [Syl,(G)|. Note
that if we choose a p such that |G : Ng(P)| = [Syl,(G)| = m > 1 for P € Syl,(G) (Corollary
3.3.1), then ker(G, Syl (G),-) C stabg(P) = Ng(P) & G is proper. Since we assume (for
contradiction) that G is simple, ker(G, Syl (G), ) = {1} because otherwise it would be a
nontrivial, proper normal subgroup. Hence by Proposition 2.2.6, G = some subgroup of
Sym(X) and in particular |G| | m!. We would then get a contradiction hopefully.
e.g. * = 48 = 2% x 3. Then |Syl,(G)| = 3. So G = a subgroup of (Sym(Syl,(G)) = S3) and
in particular 48 | 6, which is absurd.
e Version 2: Prove that a finite group G with given properties (usually conjugacy classes of elements
of prime order) is simple. Essentially, use the following corollary.
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Corollary 3.4.1. Let N < G a finite group and p a prime divisor of |G|. Then
(1) ze N={gzg~': g€ G} C N.
(2) pt|G:N|= Sylp(N) = Sylp(G) and F,(N) = F,(G).

Proof. (1) Immediate from definition.
(2) By the 2nd isomorphism theorem, for a P € Syl (G), P/(PN N) = PN/N < G/N. So
|[PN/N| | |P|, hence by Lagrange’s, PN/P is a p-subgroup of G/N. But p { |G : NJ|, so
PN/N ={lg/n},ie. PN = N,so P <N. So |N|, = |G|y, hence Syl,(G) C Syl,(N). The other
inclusion is clear.
Now F)(G) = UPESylp(G) P\{1¢} = UPGSylp(N) P\{1g} = F,(N).
([

Theorem 3.4.2. Ajy is simple.

Proof. We need 4 facts about G = As to start with:
(1) |G| =60 =22 x 3 x5.
(2) G has 24 elements of order 5, the 5-cycles.
(3) G has 20 elements of order 3, the 3-cycles.
(4) G has 15 elements of order 2, precisely of the form (a,b)(c,d) where a,b,¢,d € {1,...,5} are
distinct and all such elements are conjugate.

Week 6, lecture 8

Suppose G is not simple and let N <G.
1°: p | |N| for some p € {3,5}. Then since |G|, =p, p1|G: N|. So F,(G) = F,(N). Hence
e p=5= N| > [B(N)[+1> 25
e p=3=|N|>|F3(N)|+1>21
so Lagrange’s implies |[N| = 30, i.e. both 3 and 5 divide |N|. But again by Corollary 3.4.1
IN| = [F5(N)| + [F5(N)| + 1 > 45,

a contradiction.
2°: Neither 3 nor 5 divides |N|, then |N| | 4, so by Cauchy’s it contains an element of order 2. Hence
N contains all elements of order 2, so 15 < |N| | 4, a contradiction.

O

Lemma 3.4.3. Let X be the set of 3-cycles in G = A,, for n > 3. Then G = (X), and if n > 5 then all
3-cycles are conjugate.

Proof. By sheet 2 Q7, every element of A,, can be written as a product of an even number of transpositions.
Hence it suffices to prove that (a,b)(c,d) can be written as a product of 3-cycles.
1°: (a,b) = (¢, d), then (a,b)(c,d) =1 = (1,2, 3)3.
2°: {a,b} N {c,d}| = 1. WLOG a = ¢. Then (a,b)(c,d) = (a,b)(a,d) = (a,d,b).
3°: {a,b} N{c,d} = @, then (a,b)(c,d) = (a,b,c)(b,c,d).
Now G acts on X by conjugation. It suffices to show orbg((1,2,3)) = X. So let (a,b,c) € X with
a,b, c distinct. We want to find g € G : g(1,2,3)g7! = (a, b, c).
1°: {1,2,3} n{a,b,c} = @. Set g = (1,2)(1,a)(2,b)(3,¢). We add (1
it doesn’t effect since disjoint cycles commute and (1,2)(a, b, c)(1,
(a,b,c).
2°, 3°: Similar.

) just to make g even, and

,2
2)~1 = (a,b,¢)(1,2)(1,2)"! =

O
Lemma 3.4.4. Let n > 5 and 0 € A,. Then 3 a conjugate ¢’ # ¢ and some ¢ € {1,...,n} such that

o(i) = o'(i).
Proof. Let r be the length of the longest cycle in 0. WLOG, we can write 0 = (1,2,...,r)r for some
7 € S, with 7 disjoint from (1,...,r) and being a product of cycles of length < r.
1°: 7 > 3. Then set g = (3,4,5) and o/ = gog~t = g(1,...,7)g tgrg™ = (1,2,4,...)grg"*. So
o(l)=0'(1)=2but 0(2) =3 #4=0'(2).
2°: r < 2. Left as an exercise.

Remark. (1) Recall if N <G and H < G then HN N < H (2nd isomorphism theorem).
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(2) Exercise: if i € {1,...,n} then staba, (i) = A,_1.
Theorem 3.4.5. A, is simple for n > 5.

Proof. Suppose G = A,, is not simple and let N < G. We prove by induction on n with base case n = 5.
By lemma above, for 1 #0 € N, Ji € {1,...,n} and gog~' # 0 :

(9097") " (o)) =1,
S0
1+# (5109_1)71 (o) € N Nstabg(i) < stabg(i).
So by induction hypothesis which says stabg (i) & A,,_; is simple, N N stabg(4) can only be the whole
group stabg (7). So stabg(i) < N, hence N contains a 3-cycle. But then by previous lemmas, N contains

all 3-cycles. But A, is generated by 3-cycles, so A, < N. Hence A,, = N, a contradiction. |
Week 7, lecture 1

4. CLASSIFYING GROUPS OF SMALL ORDER

4.1. Semidirect product.

Definition 4.1.1. Let H, K be groups. Define a binary operation - : (H X K) x (H x K) - H x K
by (h1,k1) - (he,k2) = (h1ha, k1ks). Then (H x K, -) is a group, called the direct product of H and K,
denoted usually simply H x K.

Remark. (1) One can generalise this definition to product of more than 2 groups.
(2) The identity of Gy x --- x Gy is (1g,, ..., 1¢q,), and (g1,...,9¢/) "t = (gfl,...,gt_l).
3) Hx K~ K x H.

Lemma 4.1.2. Let H, K <G with HNK = {lg} and G = HK. Then

(1) hk=khVhe H k€ K.
(2) G2 Hx K.

Proof. (1) Let h € H,k € K. Note hk = kh < hkh™'k~! = 1. Since H < G, kh™'k™! € H, so

hkh~'k~! € H. By symmetry of H and K, hkh~'k~! € K as well, so hkh™'k~! = 1 as desired.

(2) Define ¢ : Hx K - HK = G by (h,k) — hk. Sanity check: if (hy, k1), (ho, ko) € H x K

then gﬁ((hl,kl)(hg,kQ)) = @((hlhg,klkg)) = hlhgklkg = hlklhgkg = (p((hl,kl))g@((hg,kg)) It

immediately follows from assumption that ¢ is surjective. Now if (h, k) € ker p then h = k™1 €
HNK={1},s0 h=k=1and hk =1, i.e. ker p = {1} which implies ¢ is injective.

|

Remark. The hypotheses of this lemma are not too bad to work with. Lagrange’s theorem allows us to
study H N K, Proposition 2.2.18 allows to study HK, and Sylow theorems say a lot about normality.

Definition 4.1.3. An isomorphism ¢ : G — G is an automorphism of G. The set Aut(G) := {¢ :
¢ an automorphism} is a group under composition, called the automorphism group of G.

Example 4.1.4. (1) id : G — G is an automorphism.

(2) If G = C,, where p is prime, then f.: G — G : z; — 2 € Aut(G) for 1 < e < p— 1. Furthermore,

this is in fact all the automorphisms and Aut(C)) = Cp_1 (see sheet 4 Q8).

(3) f K<Gand g€ G, thenc,: K = K : . — grg~' € Aut(K).
Definition 4.1.5. Let H, K be groups and ¢ : H — Aut(K) a homomorphism. For h € H, write ¢y,
in place of ¢(h). Define a binary operation * : (H x K) x (H x K) — H X K by (hy,k1) * (he,ks) =
(hlhg, ¢h;1(k‘1)k2). Then (H x K, x) is a group, called the semidirect product of H and K with respect
to ¢, denoted H x4 K.
Remark (Defence of the definition). This is not as weird as it looks. If z,y € G then xy = yc,-1(x)

where ¢, is as in Example 4.1.4.3 above. Also, this really is a generalisation of the direct product. To see
this, define ¢, to be idg Vh € H.

Week 7, lecture 2

Example 4.1.6. (1) Inversion homomorphism: let H = (x) with || = 2 and K be abelian. Define
¢: H— Aut(K) by ¢1,, =idg and ¢, (k) = k=L
Check ¢, is an automorphism: indeed ¢, € Aut(K) since it’s clearly bijective and as K is
abelian, ¢, (kike) = ky 'kt = ki tky b = du(kr)da(k2).
Check ¢ is a homomorphism, i.e. ¢n,n, = dn, © dn, Yhi, ha € H, which is not difficult to show.
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(2) Conjugation homomorphism: let G be finite and K <G, H < G. Define ¢ by ¢, (k) = hkh™1.
Again it’s not difficult to do the two sanity checks.

Lemma 4.1.7 (General form of Lemma 4.1.2). If H < G, K 4G with HNK = {1} and G = HK, then
G = H x4 K where ¢ is conjugation homomorphism.

Proof. Again it suffices to show f : HxyK — G : f((h,k)) = hk is an isomorphism. Let (hq, k1), (ha, k2) €
H x4 K, then

P k) (haa ka) = F((rahay 1 (k)Ko)) = Bahady, (koo
= h1h2(h2_1k1h2)k2 = hikihoks = f((h1, k1)) f((he, k2)).

To show f is bijective is similar to proof of Lemma 4.1.2. |

Example 4.1.8 (Dihedral groups as semidirect products). Recall Definition 2.1.7, write G = Da,, = (0, 7),
and let Cy 2 H := (1) < G, C,, 2 K := (0) <G. Proposition 2.2.18 says

H|K|  2xmn

HK| = =
| | |HN K] 1

=2n = |G|

since if H N K # {1} then it would have to be H since |[H| = 2. Thus G = HK, so by previous lemma
G = H x4 K where ¢ is conjugation homomorphism.
Note that

ér(0) =107 = (7(1),7(2),...,7(n)) = (n,n —1,...,1) =c !
and in general ¢,(0%) = 0%, so ¢ is also inversion homomorphism.

Lemma 4.1.9 (Generalising example above). Let G be nonabelian and finite. If

e (G has a cyclic subgroup K of order % =:n,
e G\K has an element z of order 2, and
e theonlyic {l,...,n—1}:i2=1modn are 1 and n — 1, M

then G = Day,.

Proof. First note that 1 is satisfied when n = 6, n = p or n = p? where p is prime.
Week 7, lecture 3

Set H = (z) < G and note that K <G since [G: K] =2, HN K = {1¢} since z € G\K and

H||K
L

HK|=——— =
R = 1A g

so G = HK. Recall Lemma 4.1.7, assumptions of which are all satisfied. It remains to show that
conjugation homomorphism ¢ is equal to inversion homomorphism here by example above, i.e. showing
¢(k) = k=1 Vk € K. Since K is cyclic of order n, one can write K = (y) with |y| = n. By exercises
below, it suffices to show ¢,(y) = y~!. Note that xyz~! € (y) since K <G, i.e. zyz~! = ¢’ for some
ie{l,...,n—1}. Since ¢1,, = idg, one has

Y= b14(y) = a2 (y) = (bz 0 02)(y) = ¢u(d2(y)) = QS:c(yl) = st(y)l = (xymil)nv

soy =y, ie y ~!=1g. By Lemma 1.3.3, n|i%—1,ie. i = 1modn, so by assumption i = 1 or

n — 1. One now has that ¢,(y) = y or y~ !, but if zyz~! = y then xkx~! = k Vk € K, i.e. ¢ is trivial
homomorphism, which implies G = H x4 K = H x K = Cy x C,, is abelian, contradicting assumption.
So ¢ (y) = y~*, inversion homomorphism. ([l

Exercise 4.1.10. (1) If H = (A), K = (B), show hkh™' = kVh € Hk € K & aba™! =bVa €
AbeB.
(2) If H = (x) with |2| = 2 and K = (B) is abelian, show zkx~! =k ' Vk € K < abr~ ! =b"1 Vb €
B.
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4.2. Semidirect product of an abelian group and a cyclic group. In this section, we fix a finite
group G with an abelian subgroup K of odd order @ (so we know it’s normal) and let H = (z) € Syl,(G)
with |z] = 2 (as |G| = 2xo0dd number).

Notation. For v € K, write [v, 7] := vzv~ 'z~ (the commutator).

Lemma 4.2.1 (Fitting’s). Write [K,z] := ([v,2] : v € K). One has
(1) zka=t = k=1 Vk € [K,z],
(2) K = [K,z] x Ck(x),
(3) G = (H x4 [K,z]) x Ck(x) where ¢ is inversion homomorphism.

Proof. (1) It suffices to show it for k = [v, z], a generator of [K,z]. Since |z| = 2, one has
zfv, 2]z = zvzv e 2T = 2va T = [u, 2]
Week 8, lecture 1
(2) First note that for v,w € K,
[vw, 2] = (vw)z(vw) 27! = vwrw v et

= vw (acw_lx_l) (xv_lx_l)
= [v, z][w, ],
and [v,z] =1 iff v and z commute, i.e. v € Ck ().
Now define f : K — [K,z] by f(k) = [k,z]. f is a homomorphism with ker f = Ck(x) by
above. We claim
(a) Ck(z),[K,z] < K. This is trivial since K is abelian.
(b) Ck(z)N[K,z] = {1}. Indeed, if a € Ck(x) N [K, x|, then a = zar~! = a~! by part 1, so
|a] =1 or 2. But since |K]| is odd, by Lagrange’s |a| must be 1, so a = 1.
(¢) K =[K,z]Ck(x). Indeed, by 1st isomorphism theorem |K| = |im f|| ker f| = |[K, z]||Ck ()],
hence by 2.2.18 one has
|[K, 2][|Cre (o))
|[K, 2] N Ck ()]
So by Lemma 4.1.2 one has the desired.
(3) Left as an exercise, see sheet 4 Q14.

K, 2]Cre ()] = = |[K, 2]||Ck ()| = [K].

4.3. Infinite families.
4.3.1. Abelian groups.

Theorem 4.3.1 (Fundamental theorem of finite abelian groups). Let G be a finite abelian group of order
n. Then 3 divisors dy | - -+ | d¢ of n such that G = Cy, x -+ X Cy,.

Proof. See MA251. |
Example 4.3.2. The abelian groups of order 8 are Cs, Coy x Cy, Cy x Cy x Cs.

4.3.2. Groups of order p,p?,2p where p prime.

Lemma 4.3.3. |G|=p= G = C,.

Proof. Note that by Lagrange’s, any © € G\{1} has |z| = p, so G = (z) = C),. O
Lemma 4.3.4. |G| =p? = G = Cp2 or Cp, x C,.
Proof. This follows immediately from Corollary 2.2.14 and Theorem 4.3.1. |

Lemma 4.3.5. If p is odd, then |G| = 2p = G = Cy,, or Dy,

Proof. If G is abelian then G = C, by 4.3.1. If G is nonabelian and let K € Syl ,(G), H = (z) € Syly(G)
where |z| = 2. Then

(1) |K| =5 =p,so K =C,,

(2) x € G\K,

(3) If 2 = 1mod p then i = +1mod p since Z/pZ is a field,

so by Lemma 4.1.9 one has G = Do,,. (]
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4.3.3. Groups of order 2p* where p odd prime.

Definition 4.3.6. Let K = C, x Cp, H = C and ¢ : H — Aut(K) be inversion homomorphism. H x4 K
is called the generalised dihedral group of order 2p? and denoted GDsye.

Lemma 4.3.7. |G| = 2p? = G = either Cop2, Cp x Czp, GDgp2, Dop2 or Cp X Dy,

Proof. (1) If G is abelian then G =2 Cyp2 or C)p x Cyy, by 4.3.1.
(2) If G is nonabelian, let K € Syl (G) and H = (z) € Syl,(G) where |x| = 2. Then K = either C):
or Cp x Cp.
(a) If K = C)p2 then similarly the three conditions of 4.1.9 are satisfied and G = Dy2.
Week 8, lecture 2
(b) If K = C, x C, then by Fitting’s lemma, G = (H X, [K,z]) x Ck(x) where ¢ is inversion
homomorphism. By Lagrange’s, |Ck (z)] is either 1,p or p?. But if |Cx(x)| = p? then
K = Ck(x), i.e. kx = xk Vk € K, contradicting G being abelian since it is generated by K
and z.
(i) If |Ck(z)| = 1 then Ck(z) = {1}. By Fitting’s lemma, K = [K,z] x Ck(z) = [K, z]
and so G = H x4 K = Cy g (Cp X Cp) = GDogp2.
(ii) If |Ck(z)| = p then Ck(x) = C, and so [K,z] = Cp, therefore G = (H x4 [K, z]) X
Ck(x) 2 (Cq X Cp) x Cp =2 Doy x Cy.
O

4.3.4. Groups of order pq where p,q prime with p < q and p1f (¢ —1).
Lemma 4.3.8. Let p, ¢ be as above. Then |G| =pg = G = Cpq.

Proof. By Sylow theorems, [Syl,(G)| = 1modgq and [Syl (G)| | |‘GG||q = p. Since ¢ > p and p #
Imodg, [Syl,(G)| = 1. Similarly, [Syl,(G)| = 1. Write Syl,(G) = {P} and Syl (G) = {Q}. Then
P,Q<G, PNQ = {1} and G = PQ since |PQ| = \li‘m‘g‘\ = pq = |G|. So by Lemma 4.1.2 and Theorem
431, G=E2PxQ=C,xCf=Chy. O

4.4. 2 missing pieces.

4.4.1. Groups of order 8.
Definition 4.4.1. Let ¢, j, k be indeterminates and define
Qs = {ila +i, £, ik} c R[lvjv k]

Define binary operation - : Qg X Qs — Qg by

(1) 1-g=g-1:=gand (-1)-g=g-(-1):= —g Vg € Qs.

()i ji=k j k=i, kei=.

(3) jri=—=k, k-j:=—i, i-k:=—j.

(4) (£1)> =1, ¢g* := —1 Vg € Qs\{£1}.
(Qs, ) is then a group with its full Cayley table determined, called the quaternion group.
Remark. (1) Z(Qs) = {=£1}.

(2) Qs has 1 element of order 2 (—1) and 6 elements of order 4 (i, £j, £k).
Lemma 4.4.2. |G| =8 = G = either Cs, Cy x Cy, Cy x Cy x Cq, Dg or Qs.

Proof. (1) If G is abelian then by 4.3.1 G 2 either Cg, Cy x Cy or Cy x Cy x Co.

(2) If G is nonabelian, then of the 7 elements of order > 1, none has order 8 (since then G would be
Cs) and at least one has order # 2 (since if all elements have order 2, G would be abelian), so
by Lagrange’s there must Ju € G : |u| = 4. Let K = (u) and v € G\ K with minimal order. One
then has G = (u,v). We claim vuv~! = u~!. Indeed, vuv~! € K = {1,u,u?,u"1} since K < G.
We know [vuv™!| = |u| = 4 and |u?| = 2, so vuv~! is either u or u=1. But if vuv™ = u then G
would be abelian, a contradiction. Now

(a) If |v] = 2 then conditions of Lemma 4.1.9 are satisfied, so G = Ds.

(b) If |v| = 4, note that G = K UvK and all elements of vK have order 4, so G has 1 element
of order 2 (u?) and 6 elements of order 4. It follows that ¢> = u? Vg € G : |g| = 4, since g°
has order 2 and u? is the only such element. Now if we see G as {1,u% u™1, v (uv)*1} we
have G =2 Qs.

O

Week 8, lecture 3
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4.4.2. Groups of order 12.

Definition 4.4.3. Let H = Cy = (z) where [z| = 4 and K = C3. Define ¢ : H — Aut(K) by
bgi (k) = k=", The group H x4 K is called the dicyclic group or order 12, denoted Dicya.

Lemma 4.4.4. |G‘ =12 = G = either 012, CQ X C6, ])i(}]_g7 A4 or Dis.

Proof.
(2)

(1) If G is abelian then by 4.3.1 G = either C15 or Cy x Cj.

If G is nonabelian, then

(a) If G has an element a of order 6, let K = (a). Then all subgroups of K are normal (see sheet
3 Q9). Now

(i) If G\K has an element of order 2 then conditions of 4.1.9 hold, so G = Dy,.

(ii) If G\K has no element of order 2, then let P € Syly(G). We know P £ Kby Lagrange’s,
so choose © € P\K. |z| can only be 4 since it cannot be 1 or 2. Let H = (x) and
Ky = (a?). So |H| =4, |K;| =3, and so conditions of 4.1.7 hold and G = H x4 K;
where ¢ is conjugation homomorphism. We claim that in this case, ¢ is the same
as the ¢ defined in 4.4.3 and so that G = Dicys. Indeed, let k € {a?, a7 2} C Kj.
Then G = (z,k) and zkz~! is either k or k~! since K1 < G. But zka~! # k since
G is nonabelian. So ¢, (k) = xkx~' = k= and hence ¢, (k) = k(-1 since ¢ is a
homomorphism.

(b) If G has no element of order 6, then let P = (x) € Syl;(G) where |z| = 3. By Sylow
theorems, |Syl;(G)| € {1,4}. By 2.2.16.3, |Cg(z)| is odd, and since z € Cg(x), |Cq(x) =3
and |F3(G)| > |G : Cq(x)| = 4. By 3.3.2.3, |F3(G)| = 2|Syl;(G)], so |Syl;(G)| > 2, hence
ISyl3(G)] = 4 and P 4 G. Now let G act on X = G/P by left multiplication. By sheet 2 Q9,
ker(G, X, ) < P. By Lagrange’s, ker(G, X, -) is either trivial or P, but kernels are normal,
so ker(G, X, -) is trivial and the action is faithful, so by 2.2.6, G = a subgroup of Sy. The
only subgroup of S; of order 12 is Ay4.

([

4.5. Final theorem of the chapter.

Theorem 4.5.1. The only simple group of order 60 is As.

Proof. Let G be a simple group of order 60 = 22 x 3 x 5. We claim:

(1)

(2)

If H < G then |H| < 12.
Indeed, since G is simple, G acts faithfully on X = G/H (as ker(G, X,-) < H < G), so by 2.2.6,
= a subgroup of S|,z and hence |G| | |G : H|!. Since |G| =60, |G : H| > 5, so |[H| <12, i.e.
G has no subgroup of index 4 or less.
IfPl,PQ S SYIQ(G) and P, N Py # {1}, then H = <P1 UP2> = |H‘ =12.
Indeed, let x € Py N P,\{1}. Then x € Z(P,) N Z(Pz) since |P| = 4 and all groups of order 4
are abelian. So H = (P, U P») < Cg(z). Since G is simple, Z(G) = {1}, so Cg(x) < G and so
H < G. By claim 1 |H| < 12.
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Now, 4 | |H| since |Py| = 4. Also, |Syl,(H)| = 1mod 2 by Sylow theorems, i.e. it’s odd, and
by 3.3.1 [Syly(H)| | |H|, so 4 x (an odd number) | |H|. But as Pi, P, < H, |Syly,(H)| > 2, so
|H| > 12. We conclude that |H| = 12.

If PANPy,={1} VP, # P, P1, P, € Syl,(G) then H = Ng(P) has order 12 VP € Syl,(G).

Indeed, again |Syl,(G)| = |G : Ng(P)] is odd, so |Syl,(G)| € {1,3,5,15}. It’s not 1 since G is
simple, it’s not 3 by claim 1, so |Syl,(G)| € {5,15}. Suppose it’s 15. Note that |Syl;(G)| = 6, and
by 3.3.2, since |G|5s =5, |F5(G)| =6 x (4 — 1) = 24. By the assumption that P;\{1} are disjoint,

BG)| = U P} =15x@-1)=45

PeSyl, (G)

so we have at least 69 elements in a group of order 60, an absurdity. Hence |Syl,(G)| = 5 and
|Ng(P)| = 12. Combined with claim 2, this means G always has a subgroup of index 5.

Now let H < G be a subgroup of index 5, then again by argument in proof of claim 1, G = a subgroup of
S5, but the only subgroup of S;, of order %‘ is A,. |
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5. SOLUBLE GROUP AND JORDAN-HOLDER THEOREM
5.1. Composition series.
Notation. H < G means H is a proper subgroup and H < G means H is a proper normal subgroup.
Definition 5.1.1. A composition series for a group G is a series
{lg}=GodG19--4G, =G
where the (finite) 7 is called length of the series, such that G;/G;_1 is simple V1 <i <.
Example 5.1.2. (1) If G = Dy, with the usual generators o, 7, then
Go=A{1}, Gi={(0), G2 =G

is a composition series since C'y and C), are simple.
(2) If G = S, where n > 5 then

Go={1}, Gi=A,, Go=G

is a composition series.
(3) If G = Dg with 0 = (1,2,3,4) and 7 = (1,4)(2, 3), then

GO = {].}7 G1 = <O’2>, GQ = <02,’7'>7 G3 =G
is a composition series. We could have also set G2 = (o).
Theorem 5.1.3. Every finite group has a composition series.

Proof. By convention, the trivial group has the composition series Gg = G of length 0. We then proceed
to prove by induction on |G| and assume all groups of order < |G| have a composition series.
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If G is simple then Gy = {1}, G; = G is a composition series, so suppose G is not simple. Then
AN : {1} # N # G and N < G. By inductive hypothesis, N and G/N both have a composition series,
and one writes

{leg}=No N1 g+~ QN =N
{le)n}=Go9G1 9--- 4G, =G/N
Now, by Theorem 1.6.6, 3X; : N < X; < G and X;/N = G, for all i = 1,...,s. Also by Theorem 1.6.5,
one has
Xi/N X
Xi1/N Xy’
which is simple. Now define
o N; 1<1<r
7'{Xir, r+1<i<r+s

and note that X, = N since {1g/n} = N/N, so
GodGi 9 4Gy =G
is a composition series. (Il

Corollary 5.1.4 (Direct byproduct of proof but useful to write down). Let G be a finite group, N <G,

and
(la}=No 9N S-S N, =N

{lg)n} =N/N 4 Xy/Nd--- 4 X, /N =G/N
be composition series for N and G/N where N < X; < G, then
N; 1<i<r
G“:{XFM r+1<i<r+s

yields a composition series.

Example 5.1.5. Recall 5.1.2.3 in which we have two different composition series for Dg. But they are
not that different after all: length is both 3 and all G;/G;_1 = C5 in both cases. Let’s codify this.
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Definition 5.1.6. Let
() {le} =40

(1) {la} = Bo o

be 2 composition series for a group G. We say (I) and (II) are equivalent (and write (I) ~ (II)) if r = s
and 3 a bijection

1A

A =G
B, =G

1A

f:{Ai/Ai,1 01 SZIST’}—){Bj/ijl 01 S]SS}
such that Ai/Ai—l = f(AL/Az—l)

Theorem 5.1.7 (Jordan—Holder). Any two composition series of a finite group are equivalent.

Proof. Let two composition series (I) and (II) of a group G be as above, WLOG assume r < s and do
induction on r. Base case r = 0 is trivial so suppose r > 0 and statement is true for smaller r.

1° A,_1 = B,_1 are the same group, then the two series are equivalent by inductive hypothesis.
2° A,._1 # Bs_1. The idea is to construct two new composition series to ‘link’ the current ones
together. Denote A,_1 by A and Bs;_1 by B, and let D := AN B.
We claim A £ B and B £ A. Indeed, suppose A < B, then B/A 4 G/A. But G/A is simple,
so B is either A or G, and since we assume A # B, it must be B = G, but by definition B < G, a
contradiction.
We now claim D < A and A/D = G/B (and symmetrically D < B and B/D = G/A). Indeed,
note that by Theorem 1.6.4.2, since A < A, = G so AN B < B and since B< By, = G so
ANB=D<dA. Again by 1.6.4.3,
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where G/B is simple,
S a composition series

so it remains to prove AB =G. Now, A,B<G = AB<LG = % <
so AB is either B or G, but AB # B since A £ B. By Theorem 5.1.3, D

{1} =Dod--- 4Dy =D,

G
B»
ha

and since A/D and B/D are simple, we have two new composition series for G

(1) {1}=Dy<-- 9D, 9ALG,

(V) {}=Dy g9 9D, 9BLG,
where (III) ~ (I) and (IV) ~ (II) by case 1, so r = s = t + 2. Finally, since G/B = A/D and
G/A = B/D, we see that (III) ~ (IV) by definition, so (I) ~ (II) by transitivity.
O
Definition 5.1.8. Let G be a finite group and {1g} = Gy < --- 4 G, = G a composition series. The

factors G;/G;_1 are called the composition factors of G and r is called the composition length of G.
Jordan—Holder theorem justifies the ‘the’ before the noun defined.

Remark. Composition factors don’t determine a group, e.g. Dg and Qs.

Example 5.1.9. (1) Dy has factors C), Cs.
(2) S, with n > 5 has factors A, Cs.
(3) Dg has factors Cq, Co, Cs.
Note that factors of 1 and 3 are all cyclic groups of prime order, this is something special we want to
define.

Definition 5.1.10. A finite group is soluble if all composition factors are cyclic of prime order.
Lemma 5.1.11. Let G be a finite group and N < G. Then G is soluble iff N and G/N are soluble.
Proof. See 5.1.4. ]

Example 5.1.12. (1) By above, Dy, is soluble since C,, and Ds,,/C,, = C5 are soluble (all abelian
groups are soluble).
(2) To show Sy is soluble, note that A, is soluble (proof left as an exercise) and S4/A4 = Cs is soluble.

Week 10, lecture 1
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5.2. Commutator.
Definition 5.2.1. Let G be a group and g, h € G. The commutator of g, h is [g,h] = ghg~th~ .
Example 5.2.2. (1) [g,h] =1¢ & g,h commute, so [g,h] = 1¢ Vg,h € G < G is abelian.
(2) In A5 one has
[(1,2,4)(1,3,5)] = (1,2,4)(1,3,5)(1,4,2)(1,5,3) = (1,2, 3),
and in general for A,, with n > 5 and a,b,¢,d,e € {1,...,n} distinct, one has
[(a,b,d)(a,c,e)] = (a,b,c),
so all 3-cycles in A,, are commutators, which therefore generate A, by Lemma 3.4.3.
Definition 5.2.3. The subgroup
[G,G] :=(g,h] : g,h € G)
is the commutator subgroup of G.
Remark. (1) More generally, we can think about the commutator subgroup of 2 subgroups H, K < G
with the definition
[H:K]={(hk]l:he HEkeK).
(2) The commutator subgroup is not necessarily the set of commutators. It’s a fair mistake to

confuse the two since one has to go to order 96 to find a counterexample of commutator subgroup
containing non-commutators.

Example 5.2.4. (1) If G is abelian then [G, G| = {1¢}.
(2) [An, Ay = A, for n > 5.

Theorem 5.2.5. (1) [G,G]9G.
(2) G/|G,G] is abelian.
(3) If N <G and G/N is abelian then [G,G] < N, i.e. [G,G] is the smallest normal subgroup H of
G with G/H abelian.

Proof. (1) It suffices to check that conjugates of one of generators of [G, G], i.e. a commutator, is
also a commutator. Let g, h, k € G, then

glh, klg™" = ghkh™'k ™ g™" = gh(g~ 9)k(g~ g)h ™ (g™ ')k g™
= (ghg™")(gkg™")(gh™ g™ )(gk™ g™ ")
= [ghg™", gkg™"].
(2) Denote N = [G, G] and again let g, h € G. Note that
[9,h] € N = N[g,h]| = N = Nghg 'h™!' = N = Ngh = Nhg = (Ng)(Nh) = (Nh)(Ng).
(3) By the same (but reverse) argument one has [g,h] € N, so [G,G] < N.
(]
Example 5.2.6. In G = Dy, one has 707! = 67! so [r,0] = 072. Also N := (o) < G and so
K :=(c7?) = (¢%) < N, which implies K I G (see sheet 3 Q9) and by definition K < [G,G].
1° If n is odd then K = N since |0?| = |o| (2 and n are coprime), and |G : K| = 2 with G/K = Cs,
abelian, so [G,G] < K, hence [G,G] = K.
2° If n is even then |K| = & and so |G/K| = 4 with G/K abelian by 2.2.14, so still [G,G] < K and
hence [G,G] = K.

Exercise 5.2.7. (1) Let IF be a finite field of size at least 4. Show [G, G] = G where G = SLy(F).
(2) Show that every element of As is a commutator. In fact, if G is a nonabelian simple group and
x € G, then 3¢, h € G : [g, h] = = (this, known as Ore’s conjecture, was not proven until 2008).
Definition 5.2.8. Define G(¥) = @, GV = [G,G] and inductively G® =[G~ GU=D] for i > 2. The
descending series GO >GM > ... is called the derived series of G.
Remark. (1) H<G= H™ <G,
(2) For n,m € N, (G(”))(m) = Gntm),

1

Week 10, lecture 2
Example 5.2.9. (1) AS) = A, Vie Nforn>5.
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(2) Dél) = (0?) and Déi) = [(0?),(0?)] = {1} since cyclic groups are abelian.
Observe the two patterns: one does not terminate at the trivial group and the other does. Also note
that A, is not soluble for n > 5 while Ds,, is. This brings us to the following theorem.

Theorem 5.2.10. A finite group G is soluble iff G") = {15} for some n € N.

Proof. =: We prove by induction on |G|. The base case is trivial so suppose statement holds for all
groups of order < |G| and |G| > 1. By definition, a composition series {1} =G < - <G, =G
satisfies G;/G;—1 is cyclic of prime order V1 < 4 < r. In particular, G,—; 4 G and G/G,_1 is
abelian, so by Theorem 5.2.5 G < G,_; and also G < G. Hence by Lemma 5.1.11, G is
soluble, so by inductive hypothesis (G(l))n = G0+ = {14} for some n € N.

<: We prove by induction on n. The base case n = 1 implies G is abelian, so soluble. Now suppose
statement holds for smaller values of n and denote [G,G] = G by N. Then

(n—1)
N(n—l) _ (G(l)> _ G(n) = {IG},

so N is soluble by inductive hypothesis. Now G/N is abelian by Theorem 5.2.5, so soluble. Hence
G is soluble by Lemma 5.1.11.
|

Remark. (1) In this course, we only defined ‘soluble’ for finite groups. Using theorem above as
another characterisation, one can extend the definition to infinite groups.
(2) We now have two tools, Lemma 5.1.11 and theorem above, to decide if a given group is soluble.

5.3. Examples of a soluble group.

Theorem 5.3.1. Every subgroup of a finite soluble group is soluble.

Proof. This follows immediately from remark after Definition 5.2.8 and Theorem 5.2.10. ]
Theorem 5.3.2. Every group of order p” where p prime and n € N is soluble.

Proof. Let G be such group and we prove by induction on n. The base case is trivial since any group of
prime order is abelian, so soluble, so suppose n > 1 and statement is true for any smaller n. Denote Z(G)
by Z. Note that Z is normal by definition, abelian so soluble, and |G/Z| < |G| since Z is not trivial by
Theorem 2.2.13. So G/Z is soluble by inductive hypothesis, hence by Lemma 5.1.11 G is soluble. O

Example 5.3.3 (How far can we push this?). (1) Let G be a group of order 2p™. If p = 2 then G is
soluble by theorem above. If p is odd, let P € Syl (G), then |G : P| =2 so P I G. Also, P is
soluble by theorem above and G/P 2 (5 is soluble, hence by Lemma 5.1.11 G is soluble.
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(2) Say |G| = 4p™. Is G soluble? If p = 2 then again by theorem above G is soluble, so suppose p is
odd. Now we know
e Sy is soluble (see sheet 5 Q3).
e Let G act on X = G//P where P € Syl,(G) by left multiplication, then ker(G, X,-) < P (see
sheet 2 Q9). By Lagrange’s, ker(G, X, -) has p-power order, so it’s soluble by theorem above.
e G/ker(G, X, ) = a subgroup of Sy by 2.2.3, so it’s soluble by 5.3.1.
So by 5.1.11 G is indeed soluble.
(3) If |G| = 3p™, then G is soluble by the same argument and the fact that S is soluble.
(4) Challenge: if |G| = 5p™, is G soluble? (Yes.) Note S5 is not soluble.

Theorem 5.3.4. Let G1,...,G; be finite soluble groups. Then G = G X --- x G is soluble.

Proof by induction on t. The base case is a tautology, so suppose t > 2 and result holds for smaller values
of t,i.e. X =Gy x --- Gy is soluble and we want to prove G = GG; x X is as well. Consider the projection
homomorphism 7 : G1 X X — X : (g,z) — x. Then kerm = G1 x {1x} = Gy is soluble, and im7m = X is
also soluble. By the 1st isomorphism theorem, G/ker 7 2 im 7, so by 5.1.11 one has the desired. |

5.4. Nonexaminable: nilpotent group.

Definition 5.4.1. For a group G, define 11(G) := G and for i > 2, v;(G) = [y,-1G,G]. Then
v1(G) > 72(G) > - -+ form the lower central series of G.

Definition 5.4.2. A group G is nilpotent if v, (G) = {1g} for some n € N. The maximal ¢ € N : 7.(G) #
{1g} is called the nilpotency class of G.
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Example 5.4.3. (1) All abelian groups are nilpotent of nilpotency class 1.
(2) Let G = Ds = (0,7). Then 12(G) = [G,G] = (¢?) = Z(G), and 13(G) = [Z(G),G] = {15}, so

Dy is nilpotent of nilpotency class 2.

Proposition 5.4.4. (1) If H < G and G is nilpotent, then H is nilpotent.
(2) Let N <G. Then v,(G/N) = v,(G)N/N. In particular, if G is nilpotent then so is G/N.

Exercise 5.4.5 (Before the proof). Let A C G. Show that (4) N/N = (B) where B = {aN : a € A}.

Proof. (1) By definition, if H < G then v, (H) < 7,(G) Vn € N.
(2) We prove by induction on n. If n = 1 then v;(G/N) = G/N = GN/N = ~1(G)N/N, so suppose

n > 1 and result holds for smaller values of n. Note [¢N, hN| = [g,h]N Vg,h € G. Thus
W (G/N) = ([xN,yN]: zN € v,_1(G/N),yN € G/N) by definition
([xN,yN]: zN € v,_1(G)N/N,yN € G/N) by inductive hypothesis
= ([xN,yN]:z € v,-1(GQ),y € G)
(I
(I

= {([z,y]N : z € v,-1(G),y € G)
z,y] 1 ¢ € Yn—1(G),y € G) N/N by exercise

=7,(G)N/N. by definition again

Corollary 5.4.6. Every finite nilpotent group is soluble.
Proof. First note that G(®) = G = ~;(G) and an easy inductive proof shows more generally
G Y < ~,(G) Vn e N.
Hence, G nilpotent = v, (G) = {1g} for some n € N = G("~1 = {15} = G soluble by Theorem
5.2.10. 0
Proposition 5.4.7. If |G| = p™ for p prime then G is nilpotent, i.e.
{finite groups of prime power order} C {finite nilpotent groups}
C {finite soluble groups} C {finite groups}.
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