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Possible errata

Consider the work of God:
for who can make that straight, which he hath made crooked?

Ecclesiastes 7:13

Notation: “p. x l. y” means page x, line y from the top (not counting headers; counting equations as
one line) and “p. x l. -y” means y lines up from the bottom of page x (counting lines in footnotes). We
exclude trivial errors like inconsistent numbering (of e.g. remarks). Add the word “probably” to each of
the following sentences.

p. 1 l. 9 a0 · · · an should be a0, . . . , an
p. 1 l. -10 no such verb form as lefting, should be leaving
p. 8 l. -11 missing a right bracket after Q((x))

p. 9 l. 12 there’s no n in statement; instead of d
dx it should be dn

dxn , but of course this would be
implied by current statement (via induction)

p. 12 l. 16 µ should be ν in denominator
p. 12 l. -4 there’s an extra “d” in denominator of first line of equation before xν

p. 14 l. 13 X should be W ; this is confirmed by l. −6 below when it says “W ... ha[s] the same
meaning as in Remark 1”

p. 16 l. -8 the final index of the second sum in denominator should be ν; v doesn’t show up on left
hand side
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Foreword

This is an introduction to some geometric aspects of G-function theory. Most of the results presented
here appear in print for the first time; hence this text is something intermediate between a standard
monograph and a research article; it is not a complete survey of the topic.

Except for geometric chapters (I.3.3, II, IX, X), I have tried to keep it reasonably self-contained; for
instance, the second part may be used as an introduction to p-adic analysis, starting from a few basic facts
which are recalled in IV.1.1. I have included about forty exercises, most of them giving some complements
to the main text.
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Notations

General notations

N is the set of natural numbers; Z (resp. Q,R,C) is the ring (resp. the field) of integers (resp. of rational
numbers, of real numbers, of complex numbers). If p is a prime number, Fp denotes the prime field Z/pZ
and Zp (resp. Qp) the ring of p-adic integers (resp. the field of p-adic rational numbers). For t ∈ R, we
shall write log+ t for logmax(1, t); one has log+ t1t2 ≤ log+ t1 + log+ t2. We denote by [t] the integral part
of t: [t] ∈ Z, [t] ≤ t < [t] + 1. We denote by lim (resp. lim) the upper (resp. lower) limit of a sequence of
real numbers. If f, g are two functions of a real variable, with g ≥ 0, we write f = O(g) if there exists a
constant C > 0 such that |f(x)| ≤ Cg(x) for all sufficiently large x; we write f = o(g) (resp. f ∼ g) if

limx→∞
f(x)
g(x) = 0 (resp. 1).

Places

Symbols.

Q a fixed algebraic closure of the field of rational numbers,
K a number field; that is to say, a subfield of Q which is a finite extension of Q,
OK the ring of integers in K,
d = [K : Q] the degree of K over Q,
Σ or Σ(K) the set of all places of K,
Σf (resp. Σ∞) the subset of finite (resp. infinite) places,
v | p or p = p(v) v lies above the place p of Q,
Kv a completion of K with respect to v ∈ Σ,
dv = [Kv : Qp(v)] the local degree at v ∈ Σ; one has d =

∑
v|p dv.

Normalisation.

| |v the absolute value in Kv normalised in the following way:

|p(v)|v = p(v)
−dv
d if v ∈ Σf (ultrametric case),

|ξ|v = |ξ|
dv
d if v ∈ Σ∞ (archimedean case), where

| | denotes the euclidean absolute value on Kv, for v ∈ Σ∞,
Cv a completion of an algebraic closure of Kv; | |v extends to Cv,
iv : K ↪→ Cv or Kv the natural embedding.

Remarks. The symbol
∑

v will denote a summation with all v ∈ Σ(K). For any finite extension K ′ of
K, any ζ ∈ K and v ∈ Σ(K), one has |ξ|v =

∏
w∈Σ(K′) |ζ|K′,w, and all factors have the same value; see

[13],[16] for this material.

Rings

Let R be a commutative entire ring with unit. We shall use the following entire rings (with standard
operations):
R[x] the polynomial ring over R; more generally,
R[x] the polynomial ring in several commuting indeterminates x = (x1, . . . , xν) over R,
R(x) the fraction field of R[x],
R[[x]] the ring of formal powers series over R,
R((x)) the fraction field of R[[x]],
Mµ(R) the ring of square matrices of size µ over R; we shall identify Mµ(R((x))) with Mµ(R)((x)),
GLµ(R) the group of its invertible elements,
I or Iµ its unit,(
Y
n

)
for Y ∈ Mµ(R),

(
Y
n

)
= (n!)−1Y (Y − I) · · · (Y − (n− 1)I) whenever n! is invertible in R,

tY the transposed matrix of Y ∈ Mµ(R).

vi



Notations vii

We shall also denote by Mµ,ν(R) the abelian group of matrices with µ rows, ν columns, whose entries
belong to R. For Y ∈ Mµ,ν(R), we shall denote by ijY ∈ R the (i, j)-entry of Y . Let us assume that R is a
field. For Y ∈ Mµ,ν(R((x))), we shall denote by Yn ∈ Mµ,ν(R) the coefficient of xn in Y , and by ijYn ∈ R
the coefficient of xn in ijY ∈ R((x)). For Y,Z ∈ Mµ,ν(R((x))), the Hadamard product Y ∗Z ∈ Mµ,ν(R((x)))
is defined by ij(Y ∗Z)n = ijYn · ijZn. Then (Mµ,ν(R((x))),+, ∗) is a (nonentire) ring with unit; the entries
of its unit are 1

1−x ∈ R((x)).

Differential operators

Differential polynomials in ∂ = x d
dx (resp. in d

dx ) and their coefficients, are denoted by Roman (resp.

Greek) letters, e.g. Λ = 1
µ!

dµ

dxµ −
∑µ−1

j=0 Yj
1
j!

dj

dxj .

References

Quotations like “cf. III(8)”, or “Theorem IV 5.3” indicate a reference to Formula (8) in Chapter III, resp.
to the theorem proved in Subsection 5.3 of Chapter IV. When there are several propositions etc... in a
single subsection, they are numbered.



Introduction

This booklet is by itself an introduction, because it is the first one devoted to G-function theory. However
this does not mean that G-functions constitute a new topic: they were brought in by C. L. Siegel in 1929,
in his famous paper on applications of diophantine approximation. He defined G-functions to be the
formal power series y =

∑
anx

n whose coefficients an lie in some algebraic number field K, which fulfil
the following three conditions:

i) the maximum of the moduli of the conjugates of an grows at most geometrically with n (i.e. is
bounded by Cn),

ii) there exists a sequence of natural numbers (dn) which grows at most geometrically such that dnam
is integral for every m ≤ n (i.e. the “common denominator” of a0 · · · an grows at most geometrically
with n),

iii) y satisfies some linear homogeneous differential equation

dµ

dxµ
y + γµ−1

dµ−1

dxµ−1
y + · · ·+ γ0y = 0

with rational function coefficients γh ∈ K(x).

After giving some examples, (hypergeometric series 2F1, abelian integrals...), Siegel stated some results
that he could obtain using the techniques he worked out for so-called E-functions in the same paper, but
did not give any detail concerning the proof.

Except for scattered results about particular cases, it was not before forty years later that G-function
theory started to develop slowly as a modest chapter of diophantine approximation, in the direction
indicated by Siegel. In 1981 a fundamental paper of E. Bombieri appeared, in which not only he proved
some of Siegel’s irrationality statements in general form (relying on some previous work of A. I. Galočkin),
but also, and more significantly, he pointed out the local-to-global nature of the theory.

Since then, the theory overflowed out of its original setting, and new connections with arithmetic
algebraic geometry appeared (through the works of D. V. and G. V. Chudnovsky, F. Beukers, and the
author); a few of them constitute the matter of the present book.

G-functions and differential equations

Meanwhile, point iii) tended to disappear in the definition of G-functions – maybe because many authors
studied components of solutions of linear systems, for which Siegel’s definition seems (unduly) insufficient?
However this is unfortunate: for instance the (uncountably many) series which satisfy i) and ii) may be
quite “pathological”, while the (countable) set of G-functions enjoys nice properties, such as the following
one (see Chapter VI):

Theorem A. Any G-function y ∈ K[[x]] satisfies
∏

Rv(y) > 0, where v runs over the places of K such
that the radius of convergence Rv(y) of y (considered as a v-adic function) is finite.

Roughly speaking, this means that the v-adic radii of convergence cannot be too small; whether the
converse statement holds, under iii), is an interesting open problem (see Chapter V for a partial answer).

In fact, lefting iii) aside in the definition of G-function is more unfortunate, because it sacrifices the
geometric nature of Siegel’s concept, in light of the following conjecture:

Conjecture. G-functions are exactly the solutions in Q[[x]] of geometric differential equations (over Q).

Such a statement is currently believed in by the experts, and our only originality at this point consists
in providing a minimal definition of “geometric” differential equations (or polynomials):

Namely they are elements of the multiplicative submonoid of the Weyl algebra Q
[
x, d

dx

]
generated by

all factors of Picard–Fuchs differential polynomials which control the cohomology of smooth varieties over
Q(x) (one can even consider only proper smooth varieties without changing the submonoid, see Chapter
II).

One of the main aims in the second part of this book is to prove half of this conjecture, namely:

1



Introduction 2

Theorem B. Any solution in Q[[x]] of a geometric differential equation is a G-function.
(See V app.. The difficult case is when 0 is a singularity).

The converse statement seems for the moment to lie beyond the scope of current methods, though
some approach already exists via “diagonals” (see Chapter I).

We content ourselves with proving that differential equations satisfied by G-functions share with
geometric differential equations very nice p-adic features.

More precisely, let Λ be a differential equation as in point iii) above, and let v be a finite place of
K; then we denote by Rv(Λ) the supremum of the real numbers r ≤ 1 such that Λ admits a full set
of solutions, analytic in the v-adic disk of radius r, centred at a “generic” point (see Chapter IV): for
instance, every geometric differential equation has Rv = 1 for almost every v (see Chapter V, Appendix.)
We prove in Chapters IV,V,VI the following result:

Theorem C. Let Λ be a differential equation of minimal order, satisfied by a series y ∈ K[[x]]. The
following assertions are equivalent:

1) y is a G-function,

2)
∏

v Rv(Λ) > 0.

The second condition defines what Bombieri calls “Fuchsian differential operator of arithmetic type”;
however, for reasons explained in Chapter IV, we shall prefer “G-operator”.

Hence we have reduced the above conjecture to a classieal conjecture of Bombieri–Dwork, which asserts
that G-operators should be “geometric”.

The proof of these theorems combines local methods (weak Frobenius structure...) and global methods
(Hermite–Padé approximants, à la Chudnovsky). In fact, we give quantitative results which relate
Bombieri’s size of y to

∏
Rv(y) and

∏
Rv(Λ). In the same direction, we also compare the algebraic

structure of the two sets of functions that the conjecture would identify:

Theorem D. G-functions (resp. solutions of geometric differential equations) form a subspace of Q[[x]]
which is stable under both usual (= Cauchy) and coefficientwise (= Hadamard) product.

This includes the following fact: if
∑

ynx
n satisfies some geometric differential equation, so does∑

yNn xn for any positive integer N , whose proof relies heavily upon Hodge theory (degeneration of Leray
spectral sequence and semisimplicity of the monodromy for proper smooth morphisms, see Chapter II).

On the other side, the units in the algebra of all G-functions (under the usual product) are exactly the
invertible algebraic functions in Q[[x]]. Generalising a conjecture of Christol, we expect in addition that
G-functions whose inverse satisfies condition ii) above (about denominators) are exactly the diagonals of
rational (or algebraic, which amounts to the same) functions.

Special values of G-functions

Via Theorem B, G-functions become a new tool in arithmetic algebraic geometry thanks to the diophantine
theory of their “special values”, see Chapter VII. The basic result tells that, given G-functions y1, . . . , yµ
and a positive integer δ, there exists a constant c (≤ power of δ + 1) with the following property: for
any nonzero integers a, b such that |b| ≥ c|a|c, then any polynomial relation p

(
y1
(
a
b

)
, . . . , yµ

(
a
b

))
= 0

of degree δ, with coefficients in the base field K, enters as a factor in the specialisation at x = a
b of

some functional relation q(y1, . . . , yµ) = 0 between the yi’s (with coefficients in K(x)). In fact, this
statement has a many-coloured meaning: indeed, one may understand the symbol yi

(
a
b

)
as the value in

the completion Kv taken by the v-adic Taylor series yi at the point a
b ∈ Q ⊂ Kv, for any place v of K

such that yi converges at that point; the constant c does not depend on v.
Bombieri has discovered the possibility of handling several, or even all of these places simultaneously,

which leads to a sort of “Hasse principle” for values of G-functions. Using Theorems A and C in order to
simplify his hypotheses, one may express this Hasse principle as follows, via the notion of a global relation.
According to Bombieri, we say that a relation p(y1(ξ), . . . , yµ(ξ)) = 0 is a global (resp. trivial) relation if
it holds v-adically for every place v of K for which |ξ|v < min (Rv(y1), . . . , Rv(yµ), 1) (resp. if it comes
from a functional relation by specialisation at ξ). Then the following finiteness assertion holds true:

Theorem E. Let
∐∐

δ denote the set of points ξ ∈ Q where there exists some global nontrivial relation
of degree δ at ξ between given G-functions y1, . . . , yµ. Then

∐∐
δ has bounded height (at most a power of

δ + 1).

In particular, any subset of
∐∐

δ of bounded degree over Q is finite. In fact Theorem E is effective; the
bound for the height depends only on δ, the size of the yi’s, the order of the differential equations they
satisfy, the height and the cardinality of the singular locus of these differential equations. Theorem E
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or simple experiments show that relations between values of algebraic functions at rational points are
“almost never” global. Nevertheless global relations may sometimes be found for some carefully chosen ξ in
this special case, and this leads eventually to results of a new kind concerning the diophantine geometry
of curves. Let us present here two such results:

Theorem F. Let ym = q(z) define an irreducible curve C, with q ∈ Z[z], monic of degree n. Assume
moreover that m and n have a prime common factor ℓ ≥ 3. Then

i) there are only finitely many rational points (y, z) on C such that no prime ≡ 1mod ℓ divides the

denominator of z; in fact, one has the bound H(z) < 1010n
2

H(q)8n for any such point (for any
polynomial p ∈ Q[z], we denote by H(p) the maximum among the absolute values of the numerators
and denominators of the coefficients);

ii) there are only finitely many totally real points in C(Q) with bounded denominator and degree.

The method of proof of Theorem E is a transcendence argument, namely the so-called Gelfond’s
method. The same transcendence method, when applied in a different way to series which satisfy properties
i) and ii) in the definition of G-functions, furnishes new criteria of rationality. Before giving an example,
let us note that y =

∑
anx

n satisfies i) and ii) iff its size σ(y) := lim
n→∞

1
nh(a0, . . . , an) is finite, where h

denotes the logarithmic invariant height on the space Kn.

Theorem G. A series y ∈ K[[x]] is rational iff for every embedding K ↪→ C, y defines a meromorphic
function on a complex disk of radius > exp(12σ(y)).

In fact, it is possible to give much stronger variants, assuming for instance only a uniformisation
property (cf. Chapter VIII), and this leads to Chudnovsky’s criterium of algebraicity, from which they
deduce a simple effective proof of the isogeny theorem for elliptic curves over Q.

G-functions and periods of algebraic varieties

Let X be a proper smooth variety over Q ⊂ C. We call “period of X” in degree n, any coefficient divided
by (2iπ)n of the representative matrix of the canonical isomorphism

pnX : Hn
dR(X)⊗Q C ∼ // Hn(Xan

C ,Q)⊗Q C,

with respect to bases selected in the algebraic de Rham cohomology Hn
dR(X) := Hn(X,Ω•

X), resp. in the
rational singular cohomology of the associated analytic manifold Xan

C . An element t ∈ H2m
dR (X) is called

a Hodge cycle if it lies at the level Fm of the Hodge filtration, and if (2iπ)−mp2mX (t) lies in the rational
space H2m(Xan

C ,Q). The double rationality feature of Hodge cycles (relatively to the Q-space of de Rham
cohomology, resp. to the Q(2iπ)-space of singular cohomology) has the following consequence: every

Hodge cycle in
⊗2m

Hn
dR(X) ⊂ H2mn

dR (X2n) (Künneth) gives rise to polynomial relations with coefficients
in Q(2iπ) among the periods of X (in degree n).

Grothendieck’s conjecture. Every polynomial with coefficients in Q(2iπ) among the periods “comes
from Hodge cycles” (see IX.2 for a more precise statement). This is known for elliptic curves with complex
multiplication (G. V. Chudnovsky), and for linear relations among periods of any abelian variety (G.
Wüstholz). Nevertheless, Grothendieck’s conjecture still remains an outstanding open problem in the
case of abelian varieties. We present here a new approach via G-functions. Indeed, when X varies
in a one-parameter family, the periods are given by the values of analytic functions on the base: the
“relative periods”, which satisfy suitable Picard–Fuchs differential equations. Moreover, expanding the
locally invariant relative periods around a “strong degeneration” (see IX.3,4) in Taylor series, one obtains
G-functions – in fact diagonals of rational functions – and it becomes possible to apply the results of the
previous paragraph. Making use of results from the theory of variation of Hodge structure, one can prove
(IX.5):

Theorem H. Let X → S be an abelian scheme of relative dimension g over an affine curve S defined
over a finite extension K of Q in C, and let us assume that the fibre of the connected Néron model at
some point s0 ∈ (S\S)(K) is a torus. Let δ ≥ 0, and let s ∈ S(K) be sufficiently close to s0 in S(C) (this
proximity condition depends on δ, K, “the” height of s, ... see IX.5). Then every polynomial relation with
coefficients in K, of degree ≤ δ, between the values at s of the 2g2 locally invariant relative periods around
s0, comes from Hodge cycles. In Chapter IX we shall also develop similar results for some projective
morphisms more general than abelian schemes; they apparently fall beyond the range of any other current
method.
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Global relations among periods

We have seen with Theorem E how the existence of global relations leads to much stronger results. Such
a favourable situation is encountered in the presence of “exceptional” Hodge cycles in a fibre Xs, for
instance when there exist elements of EndXs which do not come from EndS X. In Chapter X we shall
study a typical case, and prove:

Theorem I. Let X/S be an abelian scheme as in Theorem H. Let us assume in addition that the geometric
generic fibre is simple of odd dimension g. Then there are only finitely many fibres Xs (s ∈ S(Q)) with
bounded residual degree [K(s) : K], for which there is no ring embedding EndXs ↪→ Mg(Q).

(Note that there does exist an embedding EndS X ↪→ Mg(Q) because of the degeneration at s0.)
For g > 1 we believe that this type of result is new (and it is “effective”). For g = 1, exceptional

fibres Xs are elliptic curves with complex multiplication, [K(s) : K] is essentially the class number of
the order of complex multiplication, so that the statement is classical: there are only finitely many
discriminants with given class number. However our G-function method does not cover this special case
– unfortunately, because it would otherwise yield an effective version of Siegel’s theorem which links
quantitatively discriminant and class number of definite binary quadratic forms!

Vista: global relations and the “mysterious functor”

The failure of the previous method for g = 1 and more generally the need for dealing with all periods of
Xs and not only the values at s of the locally invariant relative periods, lead one to expand the relative
periods no longer at the degeneration s0, but instead at some point s1 of S. This raises at once two
problems:

i) the expansions at s1 are no longer G-functions, but only linear combinations of G-functions, say
y1, . . . , y4g2 , with coefficients in the field K(pXs1

) generated by the periods of Xs1 . The difficulty
which arise in constructing special relations among the “archimedean values” y1(s), . . . , y4g2(s)
(using periods relations on Xs) is often easily overcome by choosing K(pXs1

) as small as possible,
e.g. Xs1 of CM type.

ii) (most serious) How to construct relations between the p-adic values at s of y1, . . . , y4g2 when s is
p-adically close to s1 and “exceptional” – for instance when EndXs is bigger than EndS X?

A natural way of dealing with this problem is by imitation of the archimedean case. Here the isomorphism

pXs
should be replaced by the functorial p

(p)
Xs

obtained by composing Grothendieck’s “mysterious isomorph-
ism” which relates the de Rham cohomology to the p-adic étale cohomology, and Artin’s isomorphism
which links étale and singular cohomology (once a double embedding of the ground number field CK

# � 22� y
++ Cp

is given). J. M. Fontaine and W. Messing (and later G. Faltings in a more general setting) have indeed
constructed this “mysterious” isomorphism (which involves the definition of a p-adic analogue of 2iπ), and

the associated p-adic periods (which live in Cp((2iπ))). By functoriality of p
(p)
Xs

, nontrivial endomorphisms

on Xs lead to period relations, exactly as in the complex case. Unfortunately, the behaviour of p
(p)
Xz

when
Xz varies in a family remains rather mysterious. In fact a solution to the above point ii) seems to depend
upon the following:

Problem. How can one relate the p-adic periods of Xs to the values at s of the G-functions y1, . . . , y4g2?
More generally, what are the properties of the mysterious functor with respect to horizontality?

For the applications, the supersingular case is crucial; on the other side, one can raise this problem
not only for abelian schemes.

Anyway, a nice answer would be of importance: aside from giving an effective version of Siegel’s
theorem as mentioned above, it would also suggest that relations between values at ξ ∈ K ⊂ C, say, of
solutions y1, . . . , yn in K[[x]] of an absolutely irreducible G-operator Λ (for which 0 is ordinary), have a
“tendency” to be factors of global relations, thus providing a large range of applications to Theorem E. The
heuristic reasons for this are as follows: granting the Bombieri–Dwork conjecture, we may first replace
Λ by a Picard–Fuchs equation associated with a proper smooth K[x](x)-scheme X. The Grothendieck
conjecture for the product X0×Xξ would now show that a relation q(y1(ξ), . . . , yn(ξ)) = 0 with coefficients
in K comes from Hodge cycles. Deligne’s hope states that Hodge cycles should be absolute (see Appendix
to IX); this would enable us to write similar relations qv(y1(ξ), . . . , yb(ξ) = 0 which hold v-adically for
every archimedean place v of K for which the v-adic values yi(ξ) are defined. Furthermore, there is a
conjecture of Fontaine which asserts that the “variety of p-adic periods” of Xξ should be isomorphic

to the variety of complex periods (with respect to a double embedding CK
# � 22� y
++ Cp

); in fact, this is a
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consequence of a consequence of a more general conjecture about the behaviour of absolute Hodge cycles

under p
(p)
Xξ

. Together with a favourable answer to the absolute problem, this tends to show that there are

corresponding relations qv at the finite places. On multiplying these (finitely many) relations qv for all v
such that |ξ|v < Rv(y1, . . . , yn), we would at last obtain a global elation, “containing” the initial relation
as a factor.

For other potential applications, we refer to the last section of Chapter X. In fact, we believe that
the above problem is a key for understanding and resolving a whole hierarchy of arithmetico-geometric
problems.

The reader may now skip to the last appendix of the book, where a short and typical application of
Theorem E is given: a new proof of the transcendence of π.

Here, however, we can only hope that we have given some feeling for the intricate links which relate
G-functions to arithmetic algebraic geometry.



Part One

What are G-functions?

6



Chapter I

G-functions

G-functions appeared in Siegel’s paper[17] about diophantine approximation, and led in this context to an
extensive literature (see[1] for a small list). In this chapter we present a definition of G-functions (inspired
by Bombieri “local-to-global” setting [1]), and define two basic related invariants, namely the size σ (which
coincides with Bombieri’s one, ibid.) and the global radius. We then turn to examples: rational functions,
diagonals, polylogarithms and generalised hypergeometric functions, which we study with some detail; our
presentation of diagonals is inspired by Christol [4]. At last we gather some “pathologies”.

In the next chapter, we shall explore what should be G-functions (conjecturally).

1 Heights and sizes

1.1 Height of algebraic numbers [14]

Let ζ ∈ Q an algebraic number, lying in some number field K. If ζ ≠ 0, the following “product formula”
holds: ∑

v∈Σ(K)

log |ζ|v = 0.

The (logarithmic absolute) height of ζ is defined to be∑
v∈Σ(K)

log+ |ζ|v =: h(ζ).

One has h(ζr) = |r|h(ζ) for any ζ ∈ K and r ∈ Q. Thanks to our normalisations, h(ζ) depends only
on ζ but not on K. Thus the height is well-defined over Q. Let p = a0

∏
(x − ζi) ∈ Z[x] the minimal

polynomial of ζ over Z. Then the so-called Mahler measure of ζ, defined as M(ζ) := |a0|
∏

max(1, |ζi|), is
related to the height via the formula

[Q(ζ) : Q]h(ζ) = logM(ζ)

=

∫ 1

0

log
∣∣∣p(e2πt√−1

)∣∣∣ dt (Jensen’s formula)

= lim
n→∞

1

n
log+

∣∣∣∣∣Resultant
(
p,

n∑
i=0

xi

)∣∣∣∣∣ (Langevin’s formula).

For a finite family (Ak)k of matrices, such that all entries belong to K, we set

h((Ak)k) :=
∑

v∈Σ(K)

log+ max
i,j,k

|ijAk|v.

Once again, this quantity does not depend on the choice of the number field which contains the entries

ijAk of the Ak’s.
The following classical inequality holds:

h(AB) ≤ h(A) + h(B) + log ν, for any A ∈ Mµ,ν(Q), B ∈ Mν,µ(Q).

On the other hand, given A ∈ Mµ,ν(K) of rank µ < ν, one can find a nonzero matrix B ∈ Mν,1(OK) such
that AB = 0, and

h(B) ≤ µ

ν − µ
(h(A) + log ν + c(K)),

7



I.1. Heights and sizes 8

where c(K) depends only on K.
Indeed, taking components relative to some Q-basis of K inside OK , and using the last displayed

formula, one sees that it suffices to handle the case K = Q, where it follows easily from the box principle

(“Siegel’s lemma”, which appeared in the same paper [17]); the point is that A carries

(
Z ≤n
≥−n

)ν

into(
Z ≤nν∥A∥
≥−nν∥A∥

)µ

, so that if (2n+ 1)ν > (2ν∥A∥n+ 1)µ, then two distinct elements of

(
Z ≤n
≥−n

)ν

have the

same image under A, and the difference gives an element of

(
Z ≤2n
≥−2n

)ν

which is killed by A.

1.2 Height of polynomials

Let Y ∈ Mµ,ν(Q[x]), Y =
∑

Ynx
n. We write as usual deg Y = max{n : Yn ̸= 0} for Y ≠ 0. We shall set:

h(Y ) := (1 + deg Y )−1h((Yn)n).

For µ = ν = 1, it is easy to check that (1 + deg y)h(y) ≤
∑

(h(ζ) + log 2), where ζ runs over the roots of y.

1.3 Height of formal power series; G-functions

Let Y ∈ Mµ,ν(Q[[x]]), Y =
∑

n≥c Ynx
n. We denote by Y≤N the truncated series

∑N
n=0 Ynx

n ∈ Mµ,ν(Q[x]).
We set:

h(Y ) := lim
N→∞

h(Y≤N ).

This is a well-defined quantity in [0,∞]. One checks immediately that this definition reduces to the
previous one when Y has only finitely many (actually ≤ 1 + deg Y ) nonzero coefficients.

Definition 1.3.1. A G-function is a formal power series y ∈ Q[[x]] whose height h(y) is finite, and which
is annihilated by some nonzero element of Q

[
x, d

dx

]
.

Explanation. This is equivalent to the classical definition (Siegel [17]): y =
∑

n≥0 ynx
n ∈ Q[[x]] is a

G-function if and only if all the coefficients belong to some fixed number field K, and

i) for every v ∈ Σ∞;
∑

n≥0 iv(yn)x
n ∈ Cv[[x]] defines an analytic function around 0,

ii) there exists a sequence of natural integers (dn)n∈N which grows at most geometrically, such that
dnym ∈ OK for m = 0, . . . , n,

iii) y satisfies a linear homogeneous differential equation with coefficients in K(x). This equivalence will
be proved in 2.3.

1.4 Size of Laurent series

Let Y ∈ Mµ,ν(Q((x)) , Y =
∑

n≥−N Ynx
n. We set

σ(Y ) :=

{
0 if Y is a Laurent polynomial (i.e. if almost all coefficients are 0)

h(xNY ) otherwise.

One checks immediately that this definition depends only on Y , and not on N . The generalisation to the
case of a finite family of matrices is immediate.

We shall also use constantly the convenient notation

hv,n(Y ) :=
1

n
max
i≤µ
j≤ν
k≤n

log+ |ijYk|v ;

here v denotes a place of some number field K which contains the coefficients ijYk of the (i, j)-entries of
Y for i ≤ µ, j ≤ ν, k ≤ n.

However the nonnegative real number
∑

v hv,n(Y ) does not depend on the choice of K (by the Remark
made in the index of notations).

Lemma 1.4.1. σ(Y ) = lim
n→∞

∑
v

hv,n(Y ).
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Proof. If Y ∈ Mµ,ν(Q
[
x, 1

x

]
), we clearly have limn→∞

∑
v hv,n(Y ) = 0, so that it is enough to assume

that the sequence
(

1
φ(l)

)
l≥0

of nonzero coefficients of Y is infinite. We then have

σ(Y ) = lim
l→∞

1

φ(l)
h(Y0, . . . , Yφ(l)) = lim

l→∞

1

φ(l)

∑
v

max
i≤µ
j≤ν

k≤φ(l)

log+ |ijYk|v

= lim
n→∞

∑
v

1

n
max
i≤µ
j≤ν
m≤n

log+ |ijYn|v .

Remark 1.4.2. We could everywhere replace the indexing set of summation Σ(K) by Σf (resp. Σ∞).
Denoting by hf , σf (resp. h∞, σ∞) the corresponding notions – finite (resp. infinite) part of the height or
size – the above proof shows that σf (Y ) = lim

n→∞

∑
v∈Σf

hv,n(Y ). Assume that all coefficients of the entries

of Y lie in a fixed number field K. Let dn the common denominator in N\{0} of the entries Y0, . . . , Yn.
One has

σf (Y ) ≤ log lim
n→∞

d
1
n
n ≤ dσf (Y ).

The elementary proof is omitted.

Lemma 1.4.3. Let Y ∈ Mµ,ν(Q((x))).

a) max
i,j

σ (ijY ) ≤ σ(Y ) = σ(ζY ) ≤
∑
i,j

σ (ijY ), for any ζ ∈ Q,

b) σ
(

d
dxY

)
≤ σ(Y ), for any n ∈ N,

c) if the residue Y−1 of Y vanishes, σ
(∫ x

0
Y
)
≤ σ(Y ) + 1,

d) for ζ ∈ Q, set Y(ζ) :=
∑

Ynζ
nxn. Then σ

(
Y(ζ)

)
≤ σ(Y ) + h(ζ).

Let
(
Y[k]

)N
k=1

be a subset of Mµ,ν(Q((x))), then:

e) σ
(∑

Y[k]

)
≤ σ

((
Y[k]

)
k

)
≤
∑

σ
(
Y[k]

)
,

f) σ
(∗Y[k]

)
≤
∑

σ
(
Y[k]

)
,

g) if µ = ν, σ
(∏

Y[k]

)
≤ (1 + logN)σ

((
Y[k]

)
k

)
.

Proof. The proof a,b,d,e,f is straightforward, using Lemma 1.4.1. Let us prove c): by direct computation,
we find

hv,n

(∫ x

0

Y

)
≤


hv,n(Y ) if v ∈ Σ∞

hv,n(Y ) +
1

n
max
m≤n

log |m|−1
v if v ∈ Σf ,

so that σ
(∫ x

0
Y
)
≤ σ(Y ) + lim 1

n log lcm(1, 2, . . . , n), and the inequality c) follows from the prime number
theorem. In order to prove g), we use a trick introduced in this context by Shidlovsky (see Galočkin [10,
Lemma 7]). First we assume without loss of generality that Y[k] ∈ Mµ(Q[[x]]). Let K be the extension of

Q generated by the m first coefficients ijYkl of the entries ijY[k] of the Y[k]’s, and set Y =
∏N

k=1 Y[k]. We
have

ijYm =
∑

∑
mk=m

µ∑
lk=1

il1Y1m1 l1l2Y21m1
· · · lN−1jYN1mN

.

For a finite place v ∈ Σf , this gives

(∗) log+ |ijYm|v ≤ max
m1+···+mN=m
i1,...,iN , j1,...,jN

N∑
k=1

log+ |ikjkYk1mk
|v .

By reordering Y1, . . . , YN , we may suppose that m1 ≥ m2 ≥ · · · ≥ mN , hence kmk ≤ m. This yields

log+ |ijYm|v ≤
N∑

k=1

max
mk≤m

k

max
ik,jk

log+
∣∣
ij ,jkYk,mk

∣∣
v
,
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from which we deduce

hv,m(Y ) ≤
N∑

k=1

1

k
hv,mk

((
Y[l]

)
l

)
.

For an infinite place v ∈ Σ∞, we have to add an extra term to the right hand side of (∗), namely
log#{m1, . . . ,mN :

∑
mk = m}+ log µ, which is o(m); in this case we deduce

hv,m(Y ) ≤
N∑

k=1

1

k
hv,mk

((
Y[k]

)
k

)
+ o(1).

By summing over v ∈ Σ(K), we find

σ(Y ) ≤

(
N∑

k=1

1

k

)
σ
((
Y[l]

)
l

)
≤ (1 + logN)σ

((
Y[k]

)
k

)
.

2 Radii

2.1 Local radii of convergence

Let K be a number field, and let y =
∑

n≥0 ynx
n ∈ K[[x]]. Then for any v ∈ ΣK ,

∑
iv(yn)x

n ∈ Cv[[x]]

defines a v-adic Taylor series y(v); we denote by Rv(y) ∈ [0,∞] its radius of convergence. By Hadamard’s

formula, Rv(y) = lim
n→∞

|yn|
− 1

n
v . More generally, for any Laurent series y =

∑
n≥−N ynx

n ∈ K((x)), we set

Rv(y) := Rv(x
Ny); this definition depends only on y but not on N .

2.2 The global radius

For Y ∈ Mµ,ν(K((x))), we set

ρ(Y ) :=
∑
v

log+
(
min
i,j

Rv (ijY )

)−1

∈ [0,∞].

Lemma 2.2.1. ρ(Y ) =
∑
v

lim
n→∞

hv,n(Y ); ρ is invariant under finite extension of K.

Proof. Hadamard’s formula yields

ρ(Y ) =
∑
v

max
i,j

lim
1

n
log+ |ijYn|v =

∑
v

limmax
i,j

log+ |ijYn|v .

Thus it is enough to show that

lim
n→∞

1

n
max
i,j

m≤n

log+ |ijYm|v = lim
n→∞

1

n
max
i,j

log+ |ijYn|v .

This is a special case, for tn = max
i,j

log+ |ijYn|v, of the well-known inequality

lim
n→∞

1

n
max
m≤n

tm ≤ lim
n→∞

tn
n

=: ℓ.

Indeed, for any ε > 0, let Mε ≤ Nε such that tm
m ≤ ℓ+ ε for m ≥ Mε and tm

m ≤ Nε

Mε
ℓ for m < Mε. Then

1

n
max
m≤n

tm ≤ max

(
max
m≤Mε

(m
n

) tm
m

, max
Mε≤m≤Nε

(m
n

) tm
m

)
.

The second assertion comes readily from the first one.

Remark 2.2.2. Here again we could replace the indexing set of summation Σ(K) by Σf (resp. Σ∞).
The above proof yields corresponding formulae

ρf (Y ) =
∑
v∈Σf

limhv,n(Y ), ρ∞(Y ) =
∑

v∈Σ∞

limhv,n(Y ).

Furthermore ρ(Y ) = ρf (Y ) = ρ∞(Y ), and σ∞(Y ) ≤ ρ∞(Y ).
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Lemma 2.2.3. Let Y ∈ Mµ,ν(K((x))).

a) max
i,j

ρ (ijY ) = ρ(Y ) = ρ(ζY ), for any ζ ∈ K,

b) ρ
(

d
dxY

)
= ρ(Y ),

c) if the residue Y−1 of Y vanishes, ρ
(∫ x

0
Y
)
= ρ(Y ),

d) for ζ ∈ K, ρ
(
Y(ζ)

)
≤ ρ(Y ) + h(ζ).

Let
(
Y[k]

)N
k=1

be a subset of Mµ,ν(K((x))), then

e) ρ
(∑

Y[k]

)
≤ ρ

((
Y[k]

)
k

)
= max

k
ρ
(
Y[k]

)
,

f) ρ
(∗Y[k]

)
≤
∑

ρ
(
Y[k]

)
,

g) if µ = ν, ρ
(∏

Y[k]

)
≤ max

k
ρ
(
Y[k]

)
.

Proof. Straightforward.

2.3

We now prove the equivalence stated in 1.3. Let y ∈ K[[x]]. Assume that h(y) < ∞. By Lemmas 1.4.1
and 2.2.1, one gets ρ∞(y) < ∞ and σf (y) < ∞. The first (resp. second) inequality implies condition 1.3
i) (resp. 1.3 ii), taking into account Remark 1.4.2. Conversely, assume that for any v ∈ Σ∞, Rv(y) > 0

(condition 1.3 i), and that lim
n→∞

d
1
n
n < ∞ (condition 1.3 ii), where dn denotes the common denominator in

N\{0} of y0, . . . , yn. Then

σ(y) ≤ σ∞(y) + σf (y) ≤ ρ∞(y) + log lim
n→∞

d
1
n
n < ∞.

At last, let Λ = dµ

dxµ −
∑µ−1

j=0 Yj
dj

dxj ; then Λ (
∑

ynx
n) = 0 =⇒ Q(y0, y1, . . .) is a number field.

3 Several variables; diagonalisation

3.1

All what precedes extends in a straightforward manner to the case of elements of K((x)) = K((x1, . . . , xν)).
For a multi-index n ∈ Nν , we denote by |n| its length

∑
ni; x

n means
∏

xni
i . Let y =

∑
n ynx

n ∈ K((x));
for any place v of K, we set

hv,n(y) =
1

n
max
|k|≤n

log+ |yk|v.

We also define the global radius (resp. size) by:

ρ(y) =
∑
v

lim
n→∞

hv,n(y),

σ(y) = lim
n→∞

∑
v

hv,n(y).

For ν = 1, previous lemma show the compatibility with original definitions.

3.2 Diagonalisation

One defines the diagonalisation map ∆ν from K((x)) to K((x)) by the formula

∆ν

(∑
ynx

n
)
=
∑
n≥0

y(n,n,...,n)x
n.

This is a useful tool to produce G-functions, through the following lemma (see 4.2):

Lemma 3.2.1. The following inequalities hold:

ρ (∆ν(y)) ≤ νρ(y),

σ (∆ν(y)) ≤ νσ(y).
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Proof. This follows immediately from the obvious inequality

hv,n (∆ν(y)) ≤ hv,nν(y).

Remark 3.2.2 (Deligne). Assume that for some infinite place v of K, y(v) :=
∑

iv
(
yn
)
xn is analytic at

0 ∈ Cν
v , with ν > 1. Then ∆νY is represented by the integral formula

(
2π

√
−1
)−(ν−1)

=

∫
|x2|=···=|xν |=ε
x1x2···xν=x

y
dx2 · · · dxν

x2 · · ·xν
for ε and |x| small enough.

This follows from the residue formula:

(
2π

√
−1
)−(ν−1)

=

∫
|x2|=···=|xν |=ε
x1x2···xν=x

xn dx2 · · · dxν

x2 · · ·xν
=

{
xn1 if n1 = n2 = · · · = nν

0 otherwise.

Remark 3.2.3. It seems that diagonals were first introduced in the study of Hadamard products (see e.g.
[2]). This relationship is given by the formula

∆ν (y1(x1), . . . , yν(xν)) = y1 ∗ · · · ∗ yν .

3.3 Geometric interpretation

Let us set W = SpecK(x)[x]/(x1x2 · · ·xν − x), with ν > 1. Let (E,∇) be a coherent module with
integrable connection over some affine open subset U of W , and let θ be some horizontal K(U)-linear map
from E to K((x)); in other words, y := θ(e), for some e ∈ ΓE, is a solution in K((x)) of an “integrable
differential equation”.

We consider the K(x)-linear map:

∆ν,θ : e⊗ dx2 · · · dxν

x2 · · ·xµ
7→ ∆ν(θ(e)), for all local sections e of E.

Proposition 3.3.1. The map ∆ν,θ induces a horizontal map from the algebraic de Rham cohomology
group Hν−1

dR (U, (E,∇)) endowed with Gauss–Manin connection relative to K(x) (see [11]), to K((x))
endowed with exterior derivative.

Proof. The smooth scheme U is affine, thus there is an isomorphism

Hν−1
dR (U, (E,∇)) ≃ EU ⊗ Ων−1

U/K(x)

/
∇ν−1

(
EU ⊗ Ων−2

U/K(x)

)
,

where the value at d
dx of the Gauss–Manin connection acts through ∇

(
d

d(x1x2···xµ)

)
on E. The statement

would follow from Deligne’s integral formula if θ(e)(v) were analytic at 0 for some v ∈ Σ∞. However
this can fail if 0 corresponds to an irregular singularity of (E,∇); thus we shall rather translate a purely
algebraic argument from Christol [4]. The relation

∑ dxi

xi
= 0 in Ω1

W/K(x), together with the formula

∆ν

(
xi

∂θ(e)
∂xi

)
= x d

dx∆ν(θ(e)), yields

∆ν,θ

(
∇ν−1

(
e⊗ dx2 · · · d̂xi · · · dxν

x2 · · · x̂i · · · dxν

))

= ∆ν,θ

((
xi∇

(
∂

∂xi

)
e− x1∇

(
∂

∂x1

)
e

)
⊗ dx2 · · · dxi · · · dxν

x2 · · ·xi · · ·xν

)
= ∆ν

(
xi

∂θ(e)

∂xi
− x1

∂θ(e)

∂x1

)
= 0.

Therefore ∆ν,θ factors through Hν−1
dR (U, (E,∇)). In order to prove the horizontality statement, we fix

x2, . . . , xν and get

∆ν,θ

(
x1∇

(
∂

∂x1

)
e⊗ dx2 · · · dxν

x2 · · ·xν

)
= ∆ν

(
x1

∂σ(e)

∂x1

)
= x

d

dx
∆ν,θ

(
e⊗ dx2 · · · dxν

x2 · · ·xν

)
.
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Corollary 3.3.2. Assume that Hν−1
dR (U, (E,∇)) is finite-dimensional over K(x) (assume for instance

that (E,∇) has only regular singular points, see next chapter, 2.2) then for y = θ(e) as above, ∆ν(y)
satisfies an ordinary linear homogeneous differential equation with coefficients in K(x).

Corollary 3.3.3. Assume that θ is a solution in K((x)) of the Picard–Fuchs system Hµ
dR(Y/K(x))

of a smooth proper K(x)-variety Y . Then ∆ν,θ is a solution in K((x)) of the Picard–Fuchs system

Hµ+ν−1
dR (Z/K(x)) of a smooth K(x)-variety Z.

Proof. Let V be an open dense subset of SpecK
[
x, 1

x1···xν

]
such that Y extends to a smooth proper

morphism YV
f−→ V , and let us denote by g the obvious smooth morphism V → SpecK

[
x1 · · ·xν ,

1
x1···xν

]
.

Let us consider the cartesian squares:

Z //

��

YV

f

��

U //

��

V

g

��

W // SpecK
[
x, 1

x1···xν

]
.

According to the proposition, ∆ν,θ is a solution in K((x)) of Hν−1
dR (U/K(x), Hµ

dR(Z/U)).
On the other hand, there is the Leray spectral sequence

(∗) Hν−1
dR (U/K(x), Hµ

dR(Z/U)) +3 Hµ+ν−1
dR (Z/K(x)).

Let us extend the scalars K to C; since fC is proper and smooth, the Leray spectral sequence of local
systems Rν−1gC∗R

µfC∗(C) ⇒ Rµ+ν−1 (gfC)∗ (C) degenerates [6, 2.4]. It follows from the comparison
theorem that (∗) also degenerates as a spectral sequence of K(x)-vector spaces with connection. Thus
∆ν,θ is a solution of Hµ+ν−1

dR (Z/K(x)).

Remark 3.3.4. Combining Corollary 3.3.3 with Remark 3.2.3, we get that if
∑

anx
n satisfies a Picard–

Fuchs equation from projective geometry, then for any N ,
∑

aNn xn satisfies a Picard–Fuchs equation.

4 Examples

We shall study four typical classes of G-functions, each of which is stable under Hadamard product; namely:
rational functions, diagonals of rational functions in several variables, polylogarithms and hypergeometric
functions (geometric and hypergeometric series were already put forward by C. L. Siegel [17], and G-
functions borrow their generic name from these special cases). Each of these series satisfies some linear
homogeneous differential equation, which turns out to come from geometry.

4.1 Rational functions

Let y ∈ K(x), and let us write pol(y) for the set of poles of y. We may write y as the quotient p
q

of two polynomials in OK [x]. Let us write N for the norm of the first nonzero coefficient of q; then
y ∈ OK

[
1
N

]
((x)). On the other hand, it is immediate that ρ∞(y) < ∞. Since such series occur frequently,

we state a

Definition 4.1.1 (Christol). A Laurent series y ∈ K((x)) is globally bounded if and only if

i) for any v ∈ Σ(K), Rv(y) > 0,

ii) there exists N ∈ N× such that y ∈ OK

[
1
N

]
((x)).

Lemma 4.1.2. Any y ∈ K(x) satisfies ρ(y) = σ(y) = h(pol(y)).

Proof. We have Rv(y) = minζ∈pol(y) |ζ|v for any v ∈ Σ(K), whence the equality ρ(y) = h(pol(y)).
On the other side, the fact that y is globally bounded implies hv,n(y) = 0 for almost all v, and all

n. Using Lemmas 1.4.1 and 2.2.1, we come by the inequality σ(y) ≤ ρ(y). In order to show that it is
an equality, it suffices to establish the existence of the limit limn→∞ hv,n(y) for any v ∈ Σ(K); but this
follows from the fact that the coefficients of y satisfy linear recurrence equations for n ≫ 0 (see Remark
4.1.4 below), or by decomposition into simple elements.
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Remark 4.1.3. This lemma, together with the identity d
dx

p
q =

(
p′

p − q′

q

)
p
q show that rational functions

are G-functions.

Remark 4.1.4. The lemma generalises immediately to the case of a matrix Y ∈ Mµ,ν(K(x)). The
stability of Mµ,ν(K(x)) under Hadamard product is easily seen using the characterisation of rational series:
y ∈ K(x) ⇐⇒ ∃N ∈ N×, ∃Y, Z ∈ MN (K) such that Yn = trY Zn (existence of recurrence relations); we
have the formula (Y1 ∗ Y2)n = tr (Y1 ⊗ Y2) (Z1 ⊗ Z2)

n
, with obvious notations.

4.2 Diagonals of rational functions

We shall denote by K[x](x) the localisation of the ring K[x] = K[x1, . . . , xν ] at the ideal generated by
x1, . . . , xν , and by K{x} the henselisation of K[x] at the ideal generated by x (i.e. the subring of K[[x]] of
algebraic elements over K(x)).

Definition 4.2.1. Elements in the target ∆ν

(
K[x](x)

)
of the diagonalisation map restricted to K[x](x)

are called diagonals of rational functions (over K).

Remark 4.2.2. Let us consider again the geometric interpretation of ∆ν in 3.3. In the present case, let
p
q ∈ K[x](x), with p, q ∈ K[x]. We may take for U the subset of X where q does not vanish; E = OU ,

endowed with exterior derivative ∇; θ: the standard horizontal map OU → K((x)), where x is replaced by
x1x2 · · ·xν ; e :=

p
q . We have Hν−1

dR (U, (E,∇)) = Hν−1
dR (U), the ordinary algebraic de Rham cohomology

of the smooth affine scheme U . This is a finite-dimensional K(x)-vector space; see [15] for an algebraic
proof which does not use resolution of singularities. According to Corollary 3.3.3, diagonals of rational
functions satisfy “Picard–Fuchs” differential equations associated to smooth affine K(x)-schemes.

Lemma 4.2.3. Let y ∈ K[[x]], y = ∆ν

(
p
q

)
be a diagonal of rational function. Then y is a globally

bounded G-function, and σ(y) ≤ ρ(y) < ∞.

Proof. We may assume that p, q ∈ OK [x]; let us denote by N the norm of q(0) ̸= 0. Then it is clear that
p
q ∈ OK and y ∈ OK

[
1
N

]
[[x]]. On the other side, the v-adic radius of convergence Rv

(
p
q

)
is nonzero for

every v ∈ Σ(K), and the same holds for Rv(y) according to Hadamard’s formula. Using the last remark,
this shows that y is a globally bounded G-function. The deduction σ(y) ≤ ρ(y) is made as in Lemma
4.1.2. In fact, it could be shown that σf (y) = ρf (y) ≤ νhf

(
q(0)−1

)
≤ νh (q(0)).

It happens that diagonals of rational functions occur very frequently, even though it is often difficult to
find the (nonunique) relevant rational function. To explain this fact, G. Christol [5] has set the following
conjecture up:

Conjecture 4.2.4. Every globally bounded solution in K[[x]] of a linear homogeneous differential equation
with coefficients in K[x] is the diagonal of some rational function.

In other words, every globally bounded G-function should be a diagonal. We now prove that algebraic
functions are diagonals of rational functions in two variables (Christol–Furstenberg [3][9]). Consequently,
they are globally bounded (Eisenstein).

Proposition 4.2.5. The equality ∆2

(
K[x1, x2](x1,x2)

)
= K{x} holds.

Sketch of proof. In fact we shall only consider the inclusion ⊃. Let y ∈ K{x} and let r(y, x) := 0 be

a polynomial equation for y. Assuming that r(0, 0) = 0, ∂r
∂y

∣∣∣
(0,0)

≠ 0, ∂r
∂x

∣∣
(0,0)

̸= 0, we shall exhibit a

rational function p
q such that ∆2

(
p
q

)
= y. We set q(x1, x2) =

1
x1
r(x1, x1x2), so that 1

q ∈ K[x1, x2](x1,x2),

and ∂q
∂x2

∣∣∣
(0,0)

̸= 0.

Let us consider the following diagram (where W and U have the same meaning as in Remark 4.2.2,
and Z = W\U):

0
= // H1

dR(W ∪ {0}) //

��

H1
dR(U)

ResZ∪{0}
// H0(Z ∪ {0}) // 0

0 // H1
dR(W ) // H1

dR(U)
ResZ // H0(Z) //

OO

5 U

φ
hh

0

where all arrows are horizontal maps, and where the horizontal rows are the residue exact sequences:
ResZ is the “coefficient of dq

q ”, given at the stage of differential forms by

ResZ

(
p

q

dx2

x2

)
=

(
∂q

∂x2

)−1
p

x2

∣∣∣∣∣
q(x1,x2)=0

.
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Now the derivation d
dx extends in a unique way to K(x, y), whence a connection on this space, which can be

identified with the Gauss–Manin connection on H0(Z). It follows that the image of y ∈ K(x, y) ≃ H0(Z)
under φ is given by the class of p

x · dx2

x2
where p = x1x2

∂q
∂x2

.
The following diagram of horizontal maps

H1
dR(U)

∆2,θ

��

H0(Z)
φ
oo K(x, y)

≈oo
_�

��

K[[x]] K[[x]]

(where θ is defined in the above remark) shows that (∆2,θ ◦ φ) (Y ) satisfies the same differential equation
as y, and

(∆2,θ ◦ φ) (y)|0 = x∆2

(
1

q

∂q

∂x2

)∣∣∣∣
0

= 0.

It follows that y = ∆2

(
x1x2

q
∂q
∂x2

)
.

For a proof of the reversed inclusion ⊂, with an argument from linguistics, see [8, 5].

Remark 4.2.6. The stability of diagonals of rational functions under Hadamard product is immediate
from the formula:

∆ν1+ν2 (r1 (x1, . . . , xν1) r2 (xν1+1, . . . , xν1+ν2)) = ∆ν1r1 ∗∆ν2r2.

However the subclass of algebraic functions is not stable under ∗; by way of counterexample, one may
take (Jungen, 1931):

(1− x)
1
2 ∗ (1− x)−

1
2 = ∆4

(
4

(2− x1 − x2)(2− x3 − x4)

)
= 2F1

(
1

2
,
1

2
, 1, x

)
=
∑
n≥0

(
2n

n

)2 ( x

16

)n
,

which is transcendental.

4.3 Polylogarithms

We turn back to more down-to-earth examples. Let Lk =
∑

n≥0
xn

nk be the kth polylogarithmic series. It
satisfies the “unipotent” differential equation:

d

dx

1− x

x

(
x
d

dx

)k

Lk = 0

obtained from the chain rule x d
dxLk = Lk−1, L0 = x

1−x ; the other solutions can be expressed by means of

the functions 1, log x, . . . , logk−1 x; the singularities are 0, 1,∞.

Lemma 4.3.1. One has ρ(Lk) = 0, σ(Lk) = k.

Proof. This is a straightforward consequence of the prime number theorem.

Moreover, one can show that lim
k→∞

σ(Lk
1 )

log k = 1 (cf. Lemma 2.2.3g); see ch. VIII.

Remark 4.3.2. Integration of any formal power series y is nothing but the Hadamard product xy ∗ L1.

4.4 Generalised hypergeometric functions

For a ∈ Q, we set (a)0 = 1, (a)n+1 = (a+n)(a)n, and for a := (a1, . . . , aµ) ∈ Qµ we set (a)n =
∏µ

m=1(am)n.
To any couple (a, b) in (Q\{−N})µ × (Q\{−N})ν , we associate the hypergeometric function

y = F (a, b, x) :=
∑
n≥0

(a)n
(b)n

xn.

Lemma 4.4.1. The three conditions ρ(y) < ∞, σ(y) < ∞ and µ = ν are equivalent. If they are satisfied,
one has

ρ(y) = σ(y) ≤ max

(
µ∑

m=1

(2hf (am)− hf(bm)) , 0

)
.
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Proof. Either of the conditions ρ(y) < ∞, σ(y) < ∞ implies that for v ∈ Σ∞, Rv(y) > 0 which implies in
turn that µ ≤ ν, and Rv(y) ≥ 1 (hence ρ∞(y) = σ∞(y) = 0). Let N be the greatest common denominator
of the am, bm’s; for p > N and n → ∞, we have∣∣∣∣ (am)n

(bm)n

∣∣∣∣
p

= O
(
plogn

)
,

∣∣∣∣ 1

(bn)n

∣∣∣∣ 1n
p

∼ p
1

p−1 ,

den

(
Nn(am)n
(bm)n

)
= O

(
e

1
log n

)
,

and
(
den Nn

(bm)n

) 1
n ∼ n

e (Stirling, see the appendix). The former two estimates, together with the

divergence of
∑

p>N
log p
p−1 , show that ρ(y) < ∞ =⇒ µ ≥ ν.

The latter two estimates show that σ(y) < ∞ =⇒ µ ≥ ν. Conversely the first and the third estimates
show that µ = ν implies finiteness for ρ and σ, and that

ρ(y) =
∑
p|N

lim
n→∞

hp,n,

σ(y) = lim
n→∞

∑
p|N

hp,n.

A straightforward computation (remaking that |(am)n|p = |am|np if |a|p > 1) then leads to the inequality

ρ(y) = σ(y) ≤ max

(∑
m=1

(2 log den am − log den bm) , 0

)
.

Remark 4.4.2. We could define hypergeometric series for parameters (a, b) in (K\{−N})µ+ν
for any

number field. However it follows from methods of Chapter VI that such a hypergeometric series is a
G-function only if (a, b) ∈ (Q\{−N})µ+ν

, see VI ex. 1.

Remark 4.4.3. G. Christol [5] has determined all globally bounded hypergeometric functions. The extra
condition is the following one: let N as above; then for any M with 0 ≤ M ≤ N and (M,N) = 1, and for
any positive integer j with j ≤ µ, #{i : Mai ≺ Mbj} ≥ #{i : Mbi ≺ Mbj}; here ≺ is the total ordering
of R defined by

y ≺ z ⇐⇒ y + [−y] < z + [−z] or (y + [−y] = z + [−z] and y ≥ z) .

Let us now introduce the classical Meijer G-functions, which however are not G-functions in Siegel’s sense!
These are integrals of Mellin–Barnes type over a suitable loop:

Gm,n
ν,µ (a, b, x) :=

1

2π
√
−1

∮ m∏
j=1

Γ(bj − s)

m∏
j=1

Γ(1− aj + s)

µ∏
j=m+1

Γ(1− bj + s)

v∏
j=n+1

Γ(aj − s)

xs ds for 0 ≤ m ≤ µ, 0 ≤ n ≤ ν.

In the case µ = ν, these functions satisfy some Fuchsian differential equation. Namely,

z := Gm,n
µ,µ (a, b, (−1)m+nx)

satisfies the equation

(∗) (−1)µx =

µ∏
j=1

(∂ − aj + 1)z =

µ∏
j=1

(∂ − bj)z where ∂ = x
d

dx
,

whose singularities are x = 0, (−1)µ and ∞.
The link with hypergeometric series is given by the formulae

F (a, b, x) =

µ∏
j=1

Γ(bj)

µ∏
j=1

Γ(aj)

Gµ,1
µ,µ

(
a, b,− 1

x

)
=

µ∏
j=1

Γ(bj)

µ∏
j=1

Γ(aj)

G1,µ
µ,µ (1− a, 1− b, x)
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and

Gm,n
µ,µ (a, b, x) =

m∑
k=1

m∏
j=1
j ̸=k

Γ(bj − bk)

n∏
j=1

Γ(1 + bk − aj)

µ∏
j=m+1

Γ(1 + bk − bj)

µ∏
j=n+1

Γ(aj + bk)

xbkF
(
−a+ 1 + bk,−b+ 1 + bk, (−1)µ−m−nx

)
,

where we set h = (h, . . . , h) for any h ∈ Q, see [7, 5.5]. The latter formula shows that Gm,n
µ,µ is a linear

combination (with transcendental constant coefficients) of some Siegel G-functions.

Remark 4.4.4. In the case µ = ν = 1, we have F (a, b, x) = 2F1(a, 1, b, x), the classical hypergeometric
function, and it is well known that equation (∗) is a factor of a Picard–Fuchs equation [12]. For higher µ,
this is by no means obvious. However it remains that:

Proposition 4.4.5 (for µ = ν). F (a, b, x) satisfies some Picard–Fuchs differential equation.

Proof. According to remarks of 4.2, we have

F (a, b, x) =
ν∗

i=1
(2F1 (ai, 1, bi, x)) = ∆ν

(
ν∏

i=1

2F1 (ai, 1, bi, xi)

)
.

By Corollary 3.3.3, it suffices to show that
∏ν

i=1 2F1 (ai, 1, bi, xi) satisfies a Picard–Fuchs differential

equation associated Hµ′

dR(Y/Q(x)) for some proper smooth Y . Using Künneth formula in algebraic de
Rham cohomology, it is enough to prove this statement for ν = 1. If b ∈ N×, then 2F1(a, b, x) is algebraic
and the statement holds with µ1 = 0. If b /∈ N×, we use Gauss relations between contiguous hypergeometric
series

(b− a− 1)2F1(a, 1, b, x) + a2F1(a+ 1, 1, b, x)− (b− 1)2F1(a, 1, b− 1, x) = 0

b[a− (b− a)x]2F1(a, 1, b, x) + ab(1− x)2F1(a+ 1, 1, b, x) + (b− 1)(b− a)x2F1(a, 1, b+ 1, x) = 0

in order to reduce ourselves to the case a > 0, 1 > b > 2. In this case, Euler’s integral representation

2F1(a, 1, b, x) = (b− 1)

∫ 1

0

(1− t)b−2(1− tx)−a dt

show that 2F1(a, 1, b, x) satisfies the Picard–Fuchs equation associated to the differential dt
u over the

smooth completion of the curve

uN = (1− t)(2−b)N (1− tx)aN , N = den(a, b).

5 Counterexamples

In this paragraph, we gather some “pathological” examples to show that there is no link in general
between ρ and σ. We shall show later that for solutions of linear homogeneous differential equations with
coefficients in Q(x), ρ and σ are in contrast closely related. We also state that ρ and σ are bad-behaved
under inversion of functions.

Appendix: calculus of factorials
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