A GLOSSARY OF ALGEBRAIC GEOMETRY

JIEWEI XIONG

Contents

1.	Algebra	1
2.	Geometry	1

1. Algebra

Definition 1.1 (Properties of a ring). Let A be a ring.

- (1) A is reduced if for each $a \in A$, we have $a^2 = 0 \implies a = 0$ (that is, A has no nonzero nilpotent elements).
- (2) A is normal if the localisation $R_{\mathfrak{p}}$ at each prime ideal \mathfrak{p} of R is a normal (integrally closed) domain, that is,

$$R_{\mathfrak{p}} = \{ s \in \operatorname{Frac}(R_{\mathfrak{p}}) : \exists \text{ monic } g \in R_{\mathfrak{p}}[x] : g(s) = 0 \}.$$

(3) In the case that A is noetherian, we say A is regular if each $R_{\mathfrak{p}}$ is regular, that is, the Krull dimension of $R_{\mathfrak{p}}$ equals the minimal number of generators of its maximal ideal.

Definition 1.2 (Properties of a ring map). Let $f: A \to B$ be a ring map.

- (1) f is flat if the functor $-\otimes_A B : \mathsf{Mod}_A \to \mathsf{Mod}_A$ is exact, that is, $B_1 \to B_2 \to B_3$ is exact implies $B_1 \otimes_A B \to B_2 \otimes_A B \to B_3 \otimes_A B$ is exact for A-modules B_1, B_2, B_3 .
- (2) f is faithfully flat if moreover the converse implication holds.
- (3) f is integral if for each $b \in B$, there is a monic $g \in A[x]$ such that $\overline{g}(b) = 0$ (there is a slight abuse of notation: the last g denotes the image of the first g in B[x]).
- (4) f is finite if B is a finitely generated A module, that is, there a surjective $A^{\oplus n} \to B$ for some n. Every finite ring map is integral.
- (5) In the case that A and B are local with maximal ideals $\mathfrak{m}_A, \mathfrak{m}_B$, we say f is a local ring map if $f^{-1}(\mathfrak{m}_B) = \mathfrak{m}_A$.

Definition 1.3. A local ring map $f: A \to B$ with maximal ideals $\mathfrak{m}_A, \mathfrak{m}_B$ is unramified if $f(\mathfrak{m}_A)B = \mathfrak{m}_B$, and B/\mathfrak{m}_B is a finite separable extension of A/\mathfrak{m}_A .

2. Geometry

Definition 2.1. Let (X, \mathcal{O}_X) be a ringed space. (X, \mathcal{O}_X) is a locally ringed space if each stalk $\mathcal{O}_{X,x}$ is a local ring. In this case we denote the (unique) maximal ideal of $\mathcal{O}_{X,x}$ by \mathfrak{m}_x , and the residue field by $\kappa(x)$.

A morphism of locally ringed spaces $(\pi, f): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a pair where $\pi: X \to Y$ is a continuous map of topological spaces and $f: \mathcal{O}_Y \to \pi_* \mathcal{O}_X$ is a natural transformation of functors, such that the induced map $f_x: \mathcal{O}_{Y, f(x)} \to \mathcal{O}_{X, x}$ of stalks is a local ring map.

Definition 2.2. A scheme is a ringed space locally isomorphic to affine (Spec A, $\mathcal{O}_{\text{Spec }A}$). They are locally ringed spaces. A morphism of schemes is a morphism of them as locally ringed spaces.

An S-scheme refers to a scheme X with a fixed morphism $X \to S$, and for a ring A, an A-scheme is a Spec A-scheme.

Definition 2.3. Let $f: X \to Y$ be a morphism of schemes. The diagonal morphism of f is the unique morphism $\delta_{X/Y}: X \to X \times_Y X$ such that $\operatorname{pr}_1 \circ \delta_{X/Y} = \operatorname{pr}_2 \circ \delta_{X/Y} = \operatorname{id}_X$.

Definition 2.4. Let (X, \mathcal{O}_X) be a scheme and $U \subset X$ an open subset. Then $(U, \mathcal{O}_{X|U})$ is a scheme, and we say U is affine open in X if this $(U, \mathcal{O}_{X|U})$ is affine.

Definition 2.5 (Properties of a scheme). Let (X, \mathcal{O}_X) be a scheme, which by abuse of notation is often shortened to X.

2

- (1) In the case that X is a scheme over a field k, we say X is geometrically \bullet if $X_{k'}$ is \bullet for each field extension $k' \supset k$, where \bullet can be any of the defined properties below.
- (2) (X, \mathcal{O}_X) is *irreducible* (resp. *quasicompact*, resp. *connected*) if X is irreducible (resp. quasicompact, resp. connected).
- (3) X is integral if $X \neq \emptyset$ and for each affine open $\emptyset \neq \operatorname{Spec} R \subset X$, we have R is an integral domain.
- (4) X is reduced if each $\mathcal{O}_{X,x}$ is reduced, or equivalently $\mathcal{O}_X(U)$ for each affine open U is reduced. X is integral if and only if X is reduced and irreducible.
- (5) X is normal if each $\mathcal{O}_{X,x}$ is a normal domain, or equivalently $\mathcal{O}_X(U)$ for each affine open U is a normal ring.
- (6) X is locally noetherian if for each $x \in X$, there is an affine open $\operatorname{Spec} R \ni x$ such that R is noetherian.
- (7) X is noetherian if X is locally noetherian and quasicompact.
- (8) X is regular or nonsingular if X is locally noetherian and each $\mathcal{O}_{X,x}$ is regular.

Definition 2.6 (Properties of a morphism of schemes). Let $(\pi, f) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of schemes. By abuse of notation, (π, f) is often shortened to f.

- (1) If the f is fixed or canonical, we say X is \bullet over Y where \bullet can be any of the defined adjectives below. Moreover, if $Y = \operatorname{Spec} A$ is affine and this base is fixed, we simply say X is \bullet .
 - f is universally \bullet if for any morphism $S \to Y$, the base change $f': X \times_Y S \to S$ is \bullet , where \bullet can be any of the defined properties below.
- (2) (π, f) is a closed immersion if π is a homeomorphism of X with a closed subset of Y, and f is surjective. In this case we say X is a closed subscheme of Y.
- (3) (π, f) is an *open immersion* if π is a homeomorphism of X with an open subset of Y, and f is an isomorphism. In this case we say X is an open subscheme of Y.
- (4) f is an *immersion* if it can be factored as $j \circ i$ where i is a closed immersion and j is an open immersion. In this case we say X is a *subscheme* of Y.
- (5) (π, f) is dominant (resp. surjective, resp. open, resp. closed) if π is dominant (resp. surjective, resp. open, resp. closed).
- (6) f is affine if for each affine open $U \subset Y$, we have $f^{-1}(U)$ is affine open in X.
- (7) f is quasicompact if for each affine open $U \subset Y$, we have $f^{-1}(U)$ is quasicompact.
- (8) f is quasiseparated (resp. separated) if $\delta_{X/Y}$ is quasicompact (resp. a closed immersion).
- (9) f is of finite type at $x \in X$ if there are affine opens $\operatorname{Spec} A \ni x$ and $\operatorname{Spec} B \subset Y$ such that $f(\operatorname{Spec} A) \subset \operatorname{Spec} B$ and A is isomorphic to $B[x_1, \ldots, x_n]/I$ for some n and I.
- (10) f is locally of finite type if f is of finite type at each $x \in X$.
- (11) f is of finite type if f is locally of finite type and quasicompact.
- (12) f is of finite presentation at $x \in X$ if it's of finite type at $x \in X$, with the extra hypothesis that I is finitely generated.
- (13) f is locally of finite presentation if f is of finite presentation at each $x \in X$.
- (14) f is of finite presentation if f is locally of finite presentation, quasicompact and quasiseparated.
- (15) f is flat at $x \in X$ if $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is a flat ring map.
- (16) f is flat if f is flat at each $x \in X$, is faithfully flat if f is moreover surjective, and is fppf (resp. fpqc) if f is moreover of finite presentation (resp. quasicompact).
- (17) f is smooth at $x \in X$ (of relative dimension d) if there are affine opens $\operatorname{Spec} A \ni x$ and $\operatorname{Spec} B \subset Y$ such that $f(\operatorname{Spec} A) \subset \operatorname{Spec} B$, and an open immersion

$$\operatorname{Spec} A \to \operatorname{Spec} B[x_1, \dots, x_n]/(f_1, \dots, f_{n-d})$$

for some n and f_i such that the Jacobian

$$\left(\frac{\partial f_i}{\partial x_j}(x)\right)_{ij}$$

has rank n-d. (In particular f is of finite presentation at x.)

- (18) f is smooth of relative dimension d if f is smooth at each $x \in X$ of relative dimension d.
- (19) f is unramified at $x \in X$ if f is of finite type at $x \in X$ and $\mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is unramified.
- (20) f is unramified if f is unramified at each $x \in X$.
- (21) f is étale if f is smooth and unramified.
- (22) f is proper if f is separated, of finite type, and universally closed.
- (23) f is integral (resp. finite) if f is affine and for each affine open Spec $A \subset Y$ with $f^{-1}(\operatorname{Spec} A) = \operatorname{Spec} B \subset X$, the ring map $A \to B$ is integral (resp. finite).

Every finite morphism of schemes is integral.

(24) In the case that each fibre X_y is a locally noetherian scheme, we say f is normal (resp. regular) if f is flat and X_y is geometrically normal (resp. regular).

Definition 2.7 (More properties for a scheme over a field k). Let X be a scheme over k.

- (1) Algebraic is another word for "of finite type over k" for X.
- (2) X is a variety if X is separated and algebraic (sometimes geometrically reduced is also added).
- (3) X is complete if X is proper over k.

Department of Mathematics and Statistics, Mathematics Building, University of Reading, Whiteknights campus, Reading RG6 6AX, United Kingdom

 $Email\ address {\tt : jiewei.xiong@pgr.reading.ac.uk}$