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1. Riemann integration

Aims:
(1) Rigourise

∫ b

a
f(x) dx

(2) learn how to to compute integrals
Prehistoric way: ∫ 1

0

f(x) dx =

n−1∑
j=0

f

(
j

n

)
1

n
.

n∑
j=0

j2 = x
∂

∂x
x
∂

∂x

n∑
j=0

xj

∣∣∣∣∣∣
x=1

= x
∂

∂x
x
∂

∂x

xn+1 − 1

x− 1

∣∣∣∣
x=1

=
1

n3

n−1∑
j=0

j2 =
1

n3
n(n− 1

2 )(n− 1)

3
→ 1

3
.

Remark. (1) Does the answer depend on where do we compute f?
(2) FTC is here less important than a consistent definition

1.1. Definition of Riemann integrals.

Definition 1.1.1. 2 intervals I1, I2 ⊂ R are almost disjoint if I1 ∩ I2 is ∅ or one single point.

Definition 1.1.2. A partition P of a closed interval I ⊂ R is a set {I1, . . . , In} of closed almost disjoint
intervals such that

⋃n
i=1 Ii = I.

Let f : [a, b] → R.

Notation. M = sup f , m = inf f , Mk = sup
Ik

f , mk = inf
Ik
f

1
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Definition 1.1.3. The upper Riemann sum of f with respect to P is

U(f, P ) =

n∑
k=1

Mk|Ik|.

Lower Riemann sum is

L(f, P ) =

n∑
k=1

mk|Ik|.

Clearly
m ≤ mk ≤Mk ≤M

⇒ m|Ik| ≤ mk|Ik| ≤Mk|Ik| ≤M |Ik|
⇒ m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).

Notation. B[a, b] denotes the set of all bounded functions on [a, b].

Let P be the set of all partition P ’s, then the sets {L(f, P )}P∈P , {U(f, P )}P∈P are bounded.

Definition 1.1.4. Upper Riemann integral of f is defined

U(f) = inf
P∈P

U(f, P ), [least overestimator]

and lower Riemann integral

L(f) = sup
P∈P

L(f, P ), [greatest underestimator].

Definition 1.1.5. f ∈ B[a, b] is Riemann integrable if U(f) = L(f), in which case we write∫ b

a

f(x) = L(f) = U(f).

Remark. (1) By default interval is bounded
(2) By definition unbounded function are not Riemann integrable
(3) We consider integrals over unbounded intervals and/or unbounded functions as “improper”
(4) Shorthand:

•
∫ b

a
f(x) dx 7→

∫ b

a
f

• integrable ≡ Riemann integrable

Example 1.1.6. (1) For

f(x) =

{
1 x > 0

0 x = 0
,

we have U(f, P ) = 1 and L(f, P ) = 1−|I1| since the first interval always contain 0. Clearly we then
have U(f) = 1. We also have L(f) = 1 since 1 is an upper bound and ∀ε > 0, ∃P : 1−ε < L(f, P ).

Therefore
∫ 1

0
f = 1.

(2) Let

f(x) =

{
1 x ∈ Q
0 x ̸∈ Q ,

then any I ⊂ R contains both rationals and irrationals [completeness of R] ⇒ ∀P,L(f, P ) =
0, U(f, P ) = 1 ⇒ L(f) = 0, U(f) = 1, therefore f not integrable.

By definition integrable functions are boring. Next step: build classes of integrable function.

Definition 1.1.7. The partition Q = {I1, . . . , In} of [a, b] is a refinement of P = {J1, . . . , Jk} if ∀k, Jk is
union of one or more Ik’s (or the set of end points of P is a subset of that of Q).

Theorem 1.1.8. f ∈ B[a, b], P,Q ∈ P. If Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof. Let P = {I1, I2, . . . , In}, Q = {J1, J2, . . . , Jl},mk = inf
Ik
f,Mk = sup

Ik

f,mj = inf
Jj

f,Mj = sup
Jj

f. Since

∀k, ∃αk ≤ βk : Ik =

βk⋃
j=αk

Jj ,
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we have mk ≤ mj ,Mk ≥Mj and

L(f, P ) =

n∑
k=1

mk|Ik| =
n∑

k=1

mk

βk∑
j=αk

|Jj |

=

n∑
k=1

βk∑
j=αk

mk|Jj | ≤
n∑

k=1

βk∑
j=αk

mj |Jj | =
l∑

j=1

mj |Jj | = L(f,Q).

Similarly we can prove U(f,Q) ≤ I(f, P ). □

Theorem 1.1.9. f ∈ B[a, b]. If P,Q are any two partitions, then L(f, P ) ≤ U(f,Q).

Proof. Let R be a refinement of P,Q [R = P ∪Q]. From Theorem 1.1.8,

L(f, P ) ≤ L(f,R) ≤ U(f,R) ≤ U(f,Q).

□

Corollary 1.1.10. If f ∈ B[a, b], then L(f) ≤ U(f).

Proof. We have ∀P,Q ∈ P, L(f, P ) ≤ U(f,Q), in other words L(f, P ) is a lower bound for {U(f,Q)}.
Then L(f) ≤ L(f, P ) ≤ inf

Q∈P
U(f,Q) = U(f). □

Theorem 1.1.11. f ∈ B[a, b] is integrable if and only if ∀ε > 0,∃P : U(f, P )− L(f, P ) < ε.

Proof. ⇒: Let P1, P2 ∈ P satisfy U(f, P1) < U(f) +
ε

2

L(f, P2) > L(f)− ε

2
and P a refinement of P1, P2. Then

U(f, P ) ≤ U(f, P1) < U(f) +
ε

2

L(f, P ) ≥ L(f, P2) > L(f)− ε

2

⇒ L(f)− ε

2
< L(f, P ) ≤ U(f, P ) < U(f) +

ε

2
.

Since f is integrable, L(f) = U(f), so U(f, P )− L(f, P ) < ε.
⇐: ∀P ∈ P we have U(f) ≤ U(f, P ) and L(f) ≥ L(f, P ), so

∀ε > 0, ∃P : 0 ≤ U(f)− L(f) ≤ U(f, P )− L(f, P ) < ε⇒ U(f) = L(f).

□

Theorem 1.1.12. f ∈ B[a, b] is integrable iff ∃(Pn)n≥1 ⊂ P such that

lim
n→∞

(U(f, Pn)− L(f, Pn)) = 0.

Handwavy proof. Set ε = 1
n and use Theorem 1.1.11. □

Definition 1.1.13. f : Ω → R is uniformly continuous if

∀ε > 0,∃δ(ε) : (x, y ∈ Ω, |x− y| < δ(ε)) ⇒ |f(x)− f(y)| < ε.

Theorem 1.1.14 (Continuity and uniform continuity coincide on closed bounded intervals). Let f ∈ C[a, b],
then f is uniformly continuous.

Proof. (by contradiction) Suppose f is not uniformly continuous, then ∃ε > 0 : ∀δ > 0, ∃x, y ∈ [a, b] such
that |x− y| < δ ⇒ |f(x)− f(y)| ≥ ε. Take δn = 1

n and (xn), (yn) ⊂ [a, b] such that |xn − yn| ≤ 1
n → 0.

Since [a, b] is bounded, by Bolzano-Weierstrass we can find subsequences (xnk
), (ynk

) that converge to
x = y ∈ [a, b] as [a, b] is closed and limk→∞ ynk

= limk→∞ xnk
+(ynk

− xnk
)︸ ︷︷ ︸

0

. But |f(xnk
)−f(ynk

)| ≥ ε ∀k

⇒ limk→∞ |f(xnk
)− f(ynk

)| ≥ ε and by continuity of composition |f(x)− f(x)| ≥ ε, a contradiction. □

Remark. Generally continuity ̸⇒ uniform continuity, i.e. latter is stronger, e.g. x 7→ ex on R (closed but
unbounded) and x 7→ 1

x on (0, 1) (bounded but not closed) are continuous but not uniformly. [We also
have Lipschitz continuity which is even stronger (remember the double cone?).] Anyway we are now ready
to prove the following important theorem.

Theorem 1.1.15 (∗). Let f : [a, b] → R be continuous. Then f is integrable.
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Proof. It follows that f is uniformly continuous, i.e.

∀ε > 0,∃δ : (x, y ∈ [a, b]], |x− y| < δ) ⇒ |f(x)− f(y)| < ε

b− a
.

Let P = {I1, . . . , In} be a partition of [a, b] such that |Ik| < δ. Ik is closed bounded ⇒ ∃xk, yk ∈ Ik :
Mk = sup

Ik

f = f(xk),mk = inf
Ik
f = f(yk) [attainment of bounds] and |Ik| < δ, so ∀k, |xk − yk| < δ ⇒

Mk −mk <
ε

b−a . Then

U(f, P )− L(f, P ) =

n∑
k=1

(Mk −mk)|Ik| ≤
n∑

k=1

ε

b− a
|Ik| =

ε

b− a
(b− a) = ε ∀ε > 0,

hence by Theorem 1.1.11 f is integrable. □

Theorem 1.1.16. f : [a, b] → R is monotonic. Then f is integrable. [It doesn’t have to be continuous!]

Proof. Let P be a uniform partition of [a, b] into n subintervals:

Ik =

[
a+

b− a

n
(k − 1), a+

b− a

n
k

]
, 1 ≤ k ≤ n.

WLOG, let f be increasing. Then

U(f, P )− L(f, P ) =

n∑
k=1

(
sup
Ik

f − inf
Ik
f

)
b− a

n

=
b− a

n

n∑
k=1

f

(
a+

b− a

n
k

)
− f

(
a+

b− a

n
(k − 1))

)
︸ ︷︷ ︸

telescopic

=
b− a

n
(f(b)− f(a)) → 0.

Therefore by Theorem 1.1.11 f is integrable. □

Now we can integrate functions that cannot be visualized.

Example 1.1.17. Let (γk)k≥1 be any enumeration of Q ∩ [0, 1]. Define f : [0, 1] → R:

f(x) =


0 x = 0∑

k:rk≤x

1

2k
x > 0

It’s well-defined as
∑

k≥1
1
gk <∞. Also f is increasing. Choose any δ > 0,

f(x+ δ)− f(x) =
∑

k:

rk < x+ δ

rk ≥ x

1

2k
≥ 0.

Hence f is integrable by Theorem 1.1.16.

1.2. Properties of Riemann integral.

Theorem 1.2.1 (Linearity of integration). Let f, g : [a, b] → R be integrable. Let c ∈ R. Then

(1) cf is integrable and
∫ b

a
cf = c

∫ b

a
f ;

(2) f + g is integrable and
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Remark. If f, g are integrable then αf+βg is integrable and
∫ b

a
(αf+βg) = α

∫ b

a
f+β

∫ b

a
g, an immediate

result and equivalent form of the theorem.

Proof. (1) Assume c ≥ 0 (c < 0 - an exercise). Take any P = {I1, . . . , In}. We have
sup
Ik

cf = c sup
Ik

f

inf
Ik
cf = c inf

Ik
f
⇒

{
U(cf, P ) = cU(f, P )

L(cf, P ) = cL(f, P )

Then U(cf) = inf
P∈P

U(cf, P ) = c inf
P∈P

U(f, P ) = cU(f). Similarly L(cf)cL(f), so U(cf) = L(cf) =

cU(f) = c
∫ b

a
f .
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(2) U(f + g, P ) =
∑n

k=1 sup
Ik

(f + g)︸ ︷︷ ︸
≤sup

Ik

f+sup
Ik

g

|Ik| ≤ U(f, P ) + L(g, P ). Exactness of inf ⇒ ∀ε > 0 ∃P1, P2 ∈ P

such that U(f, P1) < U(f) +
ε

2

U(g, P2) < U(g) +
ε

2

.

Let Q be a refinement of P1, P2, then

U(f + g) ≤ U(f,Q) + U(g,Q) ≤ U(f, P1) + U(g, P2) ≤ U(f) + U(g) + ε.

Similarly L(f + g) ≥ L(f) + L(g)− ε. Since f, g are integrable, L(f) = U(f), L(g) = U(g), so∫ b

a

f +

∫ b

a

g − ε ≤ L(f + g) ≤ U(f + g) ≤
∫ b

a

f +

∫ b

a

g + ε,

and since ε is arbitrary, we conclude that

L(f + g) = U(f + g) =

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g.

□

Theorem 1.2.2 (Monotonicity of integration). f, g : [a, b] → R are integrable. If f ≤ g then
∫ b

a
f ≤

∫ b

a
g.

Proof. g ≥ f ⇒ g − f ≥ 0 ⇒ ∀P ∈ P, U(g − f, P ) ≥ 0 ⇒ U(g − f) ≥ 0. But g − f is integrable by
previous theorem, so ∫ b

a

(g − f) =

∫ b

a

g −
∫ b

a

f = U(g − f) ≥ 0.

□

Corollary 1.2.3. f : [a, b] → R is integrable. Then

inf
[a,b]

f · (b− a) ≤
∫ b

a

f ≤ sup
[a,b]

f · (b− a).

Corollary 1.2.4 (Integral form of Mean Value Theorem). f ∈ C[a, b]. Then ∃c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a

f︸ ︷︷ ︸
the average value of f on [a,b]

.

Proof. Since f is continuous, it attains both inf and sup, hence

∃x, y : f(x) = m, f(y) =M,

therefore by IVT f attains every value in [m,M ], and by previous corollary,

m ≤ 1

b− a

∫ b

a

f ≤M.

□

Theorem 1.2.5. f : [a, b] → R is integrable. Then |f | is also integrable and∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |.

Hint for proof. First prove sup |f | − inf |f | ≤ sup f − inf f . Then integrability follows from Theorem
1.1.11. The inequality follows from −|f | ≤ f ≤ |f | and the monotonicity. □

Theorem 1.2.6 (Additivity). f : [a, b] → R, c ∈ (a, b). f is integrable on [a, b] ⇔ f is integrable on
[a, c], [c, b], and ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof. ⇒: f is integrable on [a, b] ⇒ ∀ε > 0, ∃P ∈ P : U(f, P )− L(f, P ) < ε. Let Pc be P ∪ {c} (in
terms of endpoints), Q = P |[a,c] (a partition of [a, c]) and R = P |[c,b] (a partition of [c, b]):
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a c bQ R

Pc

By definition it’s clear that

U(f, Pc) = U(f,Q) + U(f,R)

L(f, Pc) = L(f,Q) + L(f,R).
(∗)

Hence
U(f, Pc)− L(f, Pc)︸ ︷︷ ︸

<ε

= U(f,Q)− L(f,Q)︸ ︷︷ ︸
≥0

+U(f,R)− L(f,R)︸ ︷︷ ︸
≥0

,

therefore
U(f,Q)− L(f,Q), U(f,Q)− L(f,Q) < ε,

giving us f |[a,c] and f |[c,b] are integrable.
⇐: We have that f |[a,c] and f |[c,b] are integrable. Then

∀ε > 0,∃Q,R :

U(f,Q)− L(f,Q) <
ε

2

U(f,R)− L(f,R) <
ε

2

(∗∗)

where Q,R are partitions of [a, c], [c, b] respectively. Consider Pc = Q ∪R (endpoints) and use (∗)
and (∗∗) to conclude.

We now establish additivity. We have∫ b

a

f ≤ U(f, Pc) = U(f,Q) + U(f,R) ≤ L(f,Q) + L(f,R) + ε ≤
∫ c

a

f +

∫ b

c

f + ε

and similarly ∫ b

a

f ≥
∫ c

a

f +

∫ b

c

f − ε.

Since ε is arbitrary, we conclude that ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

□

Theorem 1.2.7. f : [a, b] → R is integrable. φ : R → R is continuous. Then φ ◦ f : [a, b] → R is
integrable.

Proof. f is integrable ⇒ bounded, i.e. ∃M > 0 : |f | ≤M . So it’s enough to consider φ on closed bounded
interval [−M,M ] which is continuous, meaning φ is bounded, i.e. ∃K > 0 : |φ| ≤ K and φ is uniformly
continuous, which means

∀ε > 0,∃δε > 0 : (x, y ∈ [−M,M ], |x− y| < δε) ⇒ |φ(x)− φ(y)| < ε. (∗)

Also, f is integrable, meaning

∀η > 0, ∃Qη ∈ P = {I1, . . . , In} : U(f,Qη)− L(f,Qη) < η. (∗∗)

We want to show that
∀ε > 0,∃P ∈ P : U(φ ◦ f, P )− L(φ ◦ f, P ) < ε.

Take P = Qη. Then

U(φ ◦ f,Qη)− L(φ ◦ f,Qη) =

n∑
k=1

sup
Ik

φ ◦ f − inf
Ik
φ ◦ f︸ ︷︷ ︸

:=osc
Ik

φ◦f

 |Ik| .
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The strategy is to break the sum into two parts: for the first sum we look at k’s such that sup
Ik

f − inf
Ik
f < δε

which gives sup
Ik

φ ◦ f − inf
Ik
φ ◦ f < ε by uniform continuity of φ. For the second sum we look at k’s such

that sup
Ik

f − inf
Ik
f ≥ δ, which there aren’t many by (∗∗) and bounded by η:

∑
k:osc f

Ik

<δε

osc
Ik
φ ◦ f |Ik|+

∑
k:osc f

Ik

≥δε

osc
Ik
φ ◦ f |Ik| ≤ ε

n∑
k=1

|Ik|+ 2K
∑

k:osc f
Ik

≥δε

|Ik|

= ε(b− a) +
2K

δε

∑
k:osc f

Ik

≥δε

δε|Ik|

≤ ε(b− a) +
2K

δε

∑
k:osc f

Ik

≥δε

osc
Ik
f |Ik|

= ε(b− a) +
2K

δε
(U(f,Qη)− L(f,Qη))

< ε(b− a) +
2Kη

δε

where ε, η are arbitrarily positively small. Choose ε = ε
2(b−a) , η = δε

2K
ε
2 , then the above = ε

2 + ε
2 = ε. □

Remark. (1) A composition of two integrable functions is not necessarily integrable.

Example 1.2.8. Given φ : R → R and f : [0, 1] → R defined as follow,

φ(x) =

{
1 x ̸= 0

0 x = 0
, f(x) =


1

q
x =

p

q
, p, q ∈ N coprime

0 x = 0

0 otherwise

then

φ ◦ f(x) =
{
1 x ∈ Q ∩ (0, 1]

0 otherwise

which is not integrable.

(2) What about f ◦ φ where f is integrable and φ continuous? Also not necessarily integrable.
Counterexamples for this case are a bit harder to find.

Theorem 1.2.9. f, g : [a, b] → R integrable, then f · g is integrable. Moreover, if g−1 is bounded, then
g−1 is integrable.

Proof. f is integrable means f2 is also, since ∀x ∈ [a, b], f2(x) = φ(f(x)) where φ : y 7→ y2 on R which is
continuous. We now write

f · g =
1

4

(
(f + g)2 − (f − g)2

)
and by linearity of integration, f · g is integrable. If g−1 is bounded, then ∃ε > 0 : |g(x)| ≥ ε ∀x ∈ [a, b],
and let

φ(y) =


1

y
|y| ≥ ε

y

ε2
|y| < ε
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y

φ

Then ∀x ∈ [a, b], φ(g(x)) = 1
g(x) where g is integrable and φ continuous, therefore g−1 is integrable. □

1.3. Fundamental theorem of calculus. i.e. how to compute
∫ b

a
f?

Theorem 1.3.1 (FTC). f : [a, b] → R integrable, F : [a, b] → R continuous and differentiable on (a, b)
such that F ′ = f . Then ∫ b

a

f(x) dx = F (b)− F (a).

Also called Newton-Leibniz formula.

Proof. It is enough to show that

∀P ∈ P, L(f, P ) ≤ F (b)− F (a) ≤ U(f, P ) (∗)

since taking the sup and inf of L and U the equality still holds, which is now L(f) ≤ F (b)− F (a) ≤ U(f),
and since f integrable, L(f) = U(f) and therefore we have what we want to prove. So now let’s prove (∗).

Let P = {I1, . . . , Ik} where Ik = [xk−1, xk], 1 ≤ k ≤ n. Note that ∀k, ∀ck ∈ Ik, inf
Ik
f ≤ f(ck) ≤ sup

Ik

f ,

and since F is continuous on [xk−1, xk] and differentiable on (xk−1, xk), by MVT

∃ck ∈ (xk−1, xk) : F (xk)− F (xk−1) = F ′(ck) · (xk − xk−1) = f(ck) · (xk − xk−1)

and therefore
inf
Ik
f |Ik| ≤ F (xk)− F (xk−1) ≤ sup

Ik

f |Ik|

and summing over all k’s gives us

L(f, P ) ≤
∑
k

F (xk)− F (xk−1)︸ ︷︷ ︸
telescopic

≤ U(f, P )

and (∗) follows immediately. □

Remark. f : [a, b] → R is integrable ⇒ bounded. So FTC cannot be applied (yet) to unbounded functions,
e.g. ∫ 1

0

1

2
√
x

dx =
√
x
∣∣1
0
= 1.

Remark (Conventional generalisation). If b < a,∫ b

a

f := −
∫ a

b

f

and ∫ a

a

f = 0,

which is consistent with additivity.

Theorem 1.3.2. Let f : [a, b] → R be integrable, define F : [a, b] → R, x 7→
∫ x

a
f . Then F ∈ C[a, b].

Moreover, if x ∈ (a, b) and f is continuous at x, F ′(x) = f(x).
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Proof. Let x ∈ (a, b). ∀h ∈ R sufficiently small that x+h ∈ [a, b], F (x+h)−F (x) =
∫ x+h

a
f−
∫ x

a
f =

∫ x+h

x
f

by additivity. f is integrable implies that ∃M > 0 : |f | ≤M . Then

|F (x+ h)− F (x)| =

∣∣∣∣∣
∫ x+h

x

f

∣∣∣∣∣ ≤
∫ x+|h|

x

|f | ≤M

∫ x+|h|

x

1 =M |h|,

i.e. F is Lipschitz continuous, hence continuous. Checking left and right continuity at x = b, a is left as
an exercise. We now want to show that

lim
h→0

F (x+ h)− F (x)

h
= f(x),

i.e.

lim
h→0

 1

h

∫ x+h

x

f(t) dt− f(x)︸︷︷︸
1
h

∫ x+h
x

f(x) dt

 = 0.

But f is continuous at x, i.e. ∀ε > 0,∃δ > 0 : |x− y| < δ ⇒ |f(x)− f(y)| < ε. Take h : |h| < δ. Then∣∣∣∣∣ 1h
∫ x+h

x

(f(t)− f(x)) dt

∣∣∣∣∣ ≤ 1

|h|

∫ x+|h|

x

|f(t)− f(x)|︸ ︷︷ ︸
<ε as |t−x|≤|h|<δ

dt <
1

|h|
ε|h| = ε.

Hence the desired result. □

Theorem 1.3.3. Let f : [a, b] → R be integrable. If f is right-continuous at a,

lim
h→0+

1

h

∫ a+h

a

f = f(a).

Similarly, if f left-continuous at b,

lim
h→0+

1

h

∫ b

b−h

f = f(b).

Proof. f is right-continuous at a means ∀ε > 0, ∃δ > 0 : 0 < t− a < δ ⇒ |f(t)− f(a)| < ε. Let h : |h| < δ.
Then ∣∣∣∣∣ 1h

∫ a+h

a

f − f(a)

∣∣∣∣∣ =
∣∣∣∣∣ 1h
∫ a+h

a

f(t) dt− 1

h

∫ a+h

a

f(a) dt

∣∣∣∣∣
≤ 1

|h|

∫ a+|h|

a

|f(t)− f(a)| dt

<
1

|h|
ε|h| = ε.

The proof is similar for the second part. □

Remark. Theorem 1.3.2 and 1.3.3 together mean that f is differentiable at any x ∈ [a, b] : f is continuous
at x.

The definition of
∫ b

a
f ∀a, b ∈ R allowed us to avoid looking at 1-sided limits for x ∈ (a, b).

Example 1.3.4. Now we know ∀p ≥ 0,∫ 1

0

xp =

∫ 1

0

(
xp+1

p+ 1

)
=

xp+1

p+ 1

∣∣∣∣1
0

=
1

p+ 1
,

which is hard to do by hand.

1.4. Methods of integration.

Theorem 1.4.1 (Integration by parts). f, g : [a, b] → R are continuous, differentiable on (a, b) such that
f ′, g′ are integrable. Then ∫ b

a

fg′ = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g.



10 OLEG ZABORONSKI

Proof. fg′, f ′g and (fg)′ = f ′g + fg′ are all integrable as sums of products of integrable functions by
Theorem 1.2.7. Then ∫ b

a

(fg)′ = f(b)g(b)− f(a)g(a) by FTC

=

∫ b

a

(f ′g + fg′) by product rule

=

∫ b

a

f ′g +

∫ b

a

fg′ by linearity.

Rearranging gives desired result. □

Example 1.4.2. For any a, b > 0,∫ b

a

log(x) dx =

∫ b

a

log(x) · x′ dx = log(b)b− log(a)a−
∫ b

a

1

x
x dx

= log(b)b− log(a)a− (b− a).

Theorem 1.4.3 (Change of variables). f : [a, b] → R is differentiable such that f ′[a, b] → R is integrable,
g is continuous on image f([a, b]). Then∫ b

a

g(f(x))f ′(x) dx =

∫ f(b)

f(a)

g(t) dt.

This is true even if f(b) < f(a).

Proof. For x ∈ f([a, b]), define

G(x) =

∫ x

f(a)

g(t) dt

which is continuous at x, so G is differentiable and G′(x) = g(x) by Theorem 1.3.2. Chain rule gives

d

dx
G(f(x)) = g(f(x)) · f ′(x)

hence ∫ b

a

g(f(x)) · f ′(x) dx =

∫ b

a

G′(f(x)) dx = G(f(b))−G(f(a))

=

∫ f(b)

f(a)

g(t) dt−
∫ f(a)

f(a)

g(t) dt

=

∫ f(b)

f(a)

g(t) dt.

□

Example 1.4.4. ∫ a

0

e−
x2

2 x dx =

∫ a

0

e−
x2

2

(
x2

2

)′

dx.

Let g(t) = e−t, f(x) = x2

2 . By theorem above the integral equals∫ a2

2

0

e−t dt = −e−t
∣∣ a2

2

0
= 1− e−

a2

2 .

Remark (Consider integrals as functions of limits of integration). In the proof of the theorem above we
established that: if f, h differentiable and g continuous, we have

d

dx

∫ f(x)

a

g(t) dt = g(f(x)) · f ′(x)

by chain rule, and similarly

d

dx

∫ a

h(x)

g(t) dt = − d

dx

∫ h(x)

a

g(t) dt = −g(h(x)) · h′(x).
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Example 1.4.5 (Construct solutions to certain PDEs). Let f : R → R be continuous, b : R× R → R be
differentiable,

u : R× R → R, (x, t) 7→
∫ b(x,t)

0

f(s) ds

where f continuous and b differentiable. Now consider the partial derivative, we have
∂u(x, t)

∂x
= f(b(x, t)) · ∂b

∂x
(x, t)

and
∂u(x, t)

∂t
= f(b(x, t)) · ∂b

∂t
(x, t)

by chain rule. Take b(x, t) = x− ct where c ∈ R is a parameter. Then

∂u(x, t)

∂x
+

1

c

∂u(x, t)

∂t
= f(b(x, t)) · 1 + 1

c
f(b(x, t))(−c) = 0,

i.e. a solution is found to the first-order linear PDE
∂u

∂x
+

1

c

∂u

∂t
= 0

parameterised by f ∈ C(R).

Example 1.4.6 (Integrals can be used to define new functions). The error function:

erf(x) =
2√
π

∫ x

0

e−t2 dt, x ∈ R.

where the integral is not computable, but FTC can be used to prove that erf is continuous. Or we could
define log(0,∞) → R in the following way:

x 7→ log(x) =

∫ x

1

1

t
dt

which has properties
• well defined ∀x > 0;
•

d

dx
log(x) =

d

dx

∫ x

1

1

t
dt =

1

x
.

•
log x+ log y =

∫ x

1

1

t
dt+

∫ y

1

1

t
dt

=

∫ x

1

1

t
dt+

∫ y

1

1

tx
x dt

=

∫ x

1

1

t
dt+

∫ xy

x

1

s
ds change of variable: s(t) = xt

=

∫ xy

1

1

t
dt

= log(xy),

which, as we’ve seen, was difficult to prove using power series definition of log.

2. Improper integrals

Definition 2.0.1. Let f : (a, b] → R be such that f is Riemann integrable on [c, b] ∀c ∈ (a, b]. Then∫ b

a

f︸ ︷︷ ︸
Improper

:= lim
ε ↓ 0︸︷︷︸
ε→0+

∫ b

a+ε

f︸ ︷︷ ︸
Riemann

,

which is a serious generalisation: f can be unbounded. If the limit exists and is finite, we say
∫ b

a
f

converges. Otherwise
∫ b

a
f diverges.

Similarly, if f : [a, b) → R is such that f is Riemann integrable on [a, c] ∀c ∈ [a, b), then∫ b

a

f := lim
ε↓0

∫ b−ε

a

f.
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Example 2.0.2. Let p > −1, then∫ 1

0

xp dx = lim
ε↓0

∫ 1

ε

xp dx = lim
ε↓0

xp+1

p+ 1

∣∣∣∣1
ε

= lim
ε↓0

 1

p+ 1
− εp+1

p+ 1︸ ︷︷ ︸
→0 since p+1>0


=

1

p+ 1
.

So
∫ 1

0
xp dx <∞ for p > −1, i.e. it converges. If p = 1,∫ 1

0

1

x
dx = lim

ε↓0
log x|1ε = lim

ε↓0
(− log(ε)) = +∞,

so it diverges.

Remark. If p ≥ 0 we get the same answer: if f is integrable on [a, b], then∫ b

a

f︸ ︷︷ ︸
improper

=

∫ b

a

f︸ ︷︷ ︸
Riemann

by continuity, i.e. the two definitions are consistent.

Definition 2.0.3. Let c ∈ (a, b) and f : [a, b]\{c} → R be Riemann integrable on [a, c− δ] and [c+ ε, b]
for all δ > 0, ε > 0 small enough.

a c b

x

y

Then ∫ b

a

f :=

∫ c

a

f︸ ︷︷ ︸
improper

+

∫ b

c

f︸ ︷︷ ︸
improper

= lim
δ↓0

∫ c−δ

a

f + lim
ε↓0

∫ b

c+ε

f

NB δ, ε are taken to 0 independently.

2.1. Unbounded intervals.

Definition 2.1.1. f : [a,∞) → R such that f is integrable on [a, b] ∀b ≥ a. Then∫ ∞

a

f := lim
b↑∞

∫ b

a

f

and similarly if f is integrable on [b, a] ∀b ≤ a∫ a

−∞
f := lim

b↓−∞

∫ a

b

f

and ∫ ∞

−∞
f :=

∫ c

−∞
f +

∫ ∞

c

f︸ ︷︷ ︸
improper integrals defined above

= lim
R1→−∞

∫ c

R1

f + lim
R2→+∞

∫ R2

c

f.
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where c ∈ R any fixed constant.
NB R1 → −∞, R2 → +∞ independently.

Example 2.1.2. ∫ ∞

−∞
x3 dx

doesn’t exist. But

lim
R→∞

∫ R

−R

x3 dx = 0

and moreover, we can let R2 be some function R1 and right hand side can be whichever real number we
want.

Exercise: check the RHS of the last definition does not depend on c.

Remark (Warnings). • The space of improperly integrable functions is a linear space, but not an
algebra (in the sense that f, g improperly integrable ̸⇒ f · g is integrable). e.g.

f(x) = g(x) =
1√
x
, x ∈ (0, 1]

are properly integrable since p = 1
2 < 1, but x 7→ 1

x is not.
• Similarly, φ is continuous and f is improperly integrable ̸⇒ φ ◦ f is improperly integrable. e.g.

φ : y 7→ y2, f : x 7→ 1√
x
, x ∈ (0, 1].

Then φ(f(x)) = 1
x which is again not integrable.

• f is improperly integrable ̸⇒ |f | is improperly integrable. See notes and assignments.

Theorem 2.1.3 (Absolute comparison test). Let f : [a,∞) → R be Riemann integrable on [a, b] ∀b ≥ a.
Suppose ∫ ∞

a

|f | <∞.

Then ∫ ∞

a

f <∞.

In this case we say
∫∞
a
f is absolutely convergent.

More generally, if there’s a function g : [a,∞) → [0,∞) such that |f | ≤ g, then∫ ∞

0

g <∞ ⇒
∫ ∞

a

f <∞.

Remark. (1) Compare this with the M -test for infinite series
(2) Similar statements apply to improper integral of f : [a, b]\{c} → R where c ∈ [a, b] which is not

necessarily bounded

Proof. By Cauchy criterion, convergence of integral of |f | implies that

∀ε > 0, ∃Lε : L2 > L1 > Lε ⇒

∣∣∣∣∣
∫ L2

a

|f | −
∫ L1

a

|f |

∣∣∣∣∣ < ε.

But by additivity ∣∣∣∣∣
∫ L2

a

|f | −
∫ L1

a

|f |

∣∣∣∣∣ =
∣∣∣∣∣
∫ L2

L1

|f |

∣∣∣∣∣ =
∫ L2

L1

|f |.

So ∣∣∣∣∣
∫ L2

L1

f

∣∣∣∣∣ ≤
∫ L2

L1

|f | < ε.

Therefore ∫ ∞

a

f <∞

by the reverse Cauchy criterion.
For the second part, repeat the above steps, simply replacing f with |f | and |f | with g. □
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Example 2.1.4. Does ∫ ∞

0

cosx2

1 + x1+ε
dx

converge ∀ε > 0? We can’t get rid of the 1+ in denominator since that would give a divergence, therefore
we break it into two parts using additivity:∫ 1

0

cosx2

1 + xε+1
dx︸ ︷︷ ︸

Riemann integrable, so no need to worry

+

∫ ∞

1

cosx2

1 + xε+1
dx

and for the second part we have

∣∣∣∣∫ ∞

1

cosx2

1 + xε+1
dx

∣∣∣∣ ≤ ∫ ∞

1

∣∣∣∣ cosx2

1 + x1+ε
dx

∣∣∣∣ = ∫ ∞

1

the |f | in the theorem︷ ︸︸ ︷
| cosx2|
1 + x1+ε

dx

≤
∫ ∞

1

1

1 + x1+ε
dx ≤

∫ ∞

1

1

x1+ε
dx

and the last integral can be computed analytically:

−1

ε
x−ε

∣∣∣∣∞
1

=
1

ε
<∞.

We conclude the desired result.

3. Sequences and series of functions

Main task: justify the interchange of maths operations.

Example 3.0.1.
lim
x→c

lim
n→∞

fn(x)
?
= lim

n→∞
lim
x→c

fn(x)

lim
n→∞

∫ b

a

fn(x) dx
?
=

∫ b

a

lim
n→∞

fn(x) dx( ∞∑
n=1

fn(x)

)′
?
=

∞∑
n=1

f ′n(x)

3.1. Pointwise and uniform convergence. Let fn : Ω → R, n ≥ 1 be a sequence of functions on Ω ⊂ R
(not necessarily closed bounded).

Definition 3.1.1 (Pointwise convergence). (fn)n≥1 on Ω converges to f : Ω → R pointwise if

∀x ∈ Ω, lim
n→∞

fn(x) = f(x).

Notation. fn → f .

Remark. Pointwise convergence is often not enough to justify various interchanges. [If all you know is
pointwise convergence, you do not know much.]

So sit tight for incoming examples of bad news!

Example 3.1.2. fn : [0, 1] → R, x 7→ x
1
n .

1

1
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We know fn(0) = 0 ∀n, and for x ∈ (0, 1], x1/n = elog x1/n

= e
1
n log x → e0 = 1. So fn → f ={

0 x = 0

1 otherwise
which is not continuous. [Pointwise convergence doesn’t preserve continuity!]

So
lim

x→0+
lim

n→∞
fn(x) = lim

x→0+
1 = 1

but
lim
n→∞

lim
x→0+

fn(x) = lim
n→∞

0 = 0.

Example 3.1.3. Pointwise can be very non-uniform. Let

fn(x) =



2nx 0 ≤ x ≤ 1

2n

− 2n

(
x− 1

n

)
1

2n
< x ≤ 1

n

0 x >
1

n

10.50.33

1

f1
f2
f3

We claim that fn → 0. We know fn(0) = 0 ∀n⇒ f(0) = 0, but also

∀x > 0, fn(x) = 0 ∀n :
1

n
< x.

However
sup

x∈[0,1]

|fn(x)− 0| = 1 ∀n ∈ N

which is constant and doesn’t even depend on x! Even worse, define

wn = nfn (Witch’s hat)

Then wn → 0 still but
sup

x∈[0,1]

|wn(x)− 0| = n

which goes to ∞! Pointwise convergence loses all its significance here.

Example 3.1.4. Let
fn : R → R, x 7→ X[n,n+1](x)︸ ︷︷ ︸

Indicator function

.

Then
lim
n→∞

X[n,n+1](x) = 0 ∀x ∈ R,

i.e. X[n,n+1] → 0. What happens to the improper integral?

lim
n→∞

∫ ∞

−∞
X[n,n+1] = lim

n→∞
1× 1 = 1

but ∫ ∞

−∞
lim
n→∞

X[n,n+1] =

∫ ∞

−∞
0 = 0.
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Example 3.1.5. fn : x 7→ sin(nx) on R, n ∈ N. Take x =
p

q
π, 0 < p < q, i.e. rational multiple of π.

Then sin((kq)x) = sin(pkπ) = 0 and sin((2kq + 1)x) = sinx > 0 which converge to different limits. So we
claim (fn) ̸→ . (Doesn’t converge pointwise)

However for any f ∈ [a, b]-Riemann integrable,

lim
n→∞

∫ b

a

f(x) sin(nx) dx = 0

(Riemann-Lebesgue Lemma).

Example 3.1.6. Let gn(x) := sinnx
n , x ∈ R. Then |gn(x)| ≤ 1

n → 0. So gn → 0. Unlike the Witch’s hat,
even sup

R
|gn| → 0. But (

lim
n→∞

gn

)′
̸= lim

n→∞
g′n = lim

n→∞
cosnx

which doesn’t exist.

Example 3.1.7. (fn) : [0, 1] → R defined in following way:
f0 = X[0,1],

f1 = X[0, 12 ], f2 = X[ 12 ,1],

f3 = X[0, 14 ], f4 = X[ 14 , 12 ], f5 = X[ 12 , 34 ], f6 = X[ 34 ,1],

· · ·

Note that fn ̸→ as ∀x ∈ [0, 1], fn(x) contains infinitely many 0’s and 1’s. However
∫ 1

0
fn → 0 since

sup f = 1 constantly but the size of subintervals goes to 0.

Definition 3.1.8 (Uniform convergence). A sequence fn : Ω → R, n ≥ 1 uniformly converges to
f : Ω → R if

∀ε > 0, ∃δNε : n > Nε ⇒ |fn(x)− f(x)| < ε ∀x ∈ Ω.

Notation. • fn ⇒ f .
• fn ̸⇒ means fn does not converge uniformly.
• ∥fn∥∞ = sup

Ω
|fn|. Left-hand side is called sup norm of fn.

So fn ⇒ f means that ∀ε > 0, ∃Nε : n > Nε ⇒ ∥f − fn∥∞ < ε or even simpler

lim
n→∞

∥f − fn∥∞ = 0.

Note that in this language, pointwise convergence can be written as

lim
n→∞

|fn(x)− f(x)| = 0 ∀x ∈ Ω.

Proposition 3.1.9. (fn ⇒ f) ⇏
⇐

(fn → f)

This is trivial.

Definition 3.1.10. A sequence (fn) on Ω ⊂ R is uniformly Cauchy if

∀ε > 0, ∃Nε : n,m > Nε ⇒ ∥fn − fm∥∞ < ε.

Theorem 3.1.11. fn ⇒ on Ω ⇔ (fn) is uniformly Cauchy.

Proof. ⇒: Let f : Ω → R be the limit, i.e.

∀ε, ∃Nε : n > Nε ⇒ ∥fn − f∥∞ <
ε

2
.

Take any n,m > Nε,
∥fn − fm∥∞ = sup

Ω
|fn − fm| = sup

Ω
|fn − f + f − fm|

≤ sup
Ω

(|fn − f |+ |fm − f |) triangle inequality

≤ sup
Ω

|fn − f |+ sup
Ω

|fm − f | = ∥fn − f∥∞ + ∥fm − f∥∞

<
ε

2
+
ε

2
= ε.

[We also proved triangle inequality for ∥ · ∥∞. Justified terminology!]
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⇐: We have ∀ε, ∃Nε : n,m > Nε ⇒ sup
Ω

|fn − fm| < ε. But |fn − fm| ≤ sup
Ω

|fn − fm| ∀x ∈ Ω by

definition, so (fm(x)) is Cauchy, so it converges to f(x) for some f : Ω → R, i.e. fm → f pointwise.
We then write ∀n,m > Nε,

fm − ε ≤ fn ≤ fm + εon Ω

(this is just rewriting the hypothesis of being Cauchy), then take limm→∞ we have

f − ε ≤ fn ≤ f + ε

so |fn − f | < ε ∀x ∈ Ω i.e. fn ⇒ f .
□

Remark. ∥ · ∥∞ is a norm on the space of bounded functions on Ω, denoted B(Ω). Notion of a norm
means that ∥ · ∥ : B(Ω) → R has following properties:

(1) ∥f∥∞ ≥ 0 ∀f ∈ B(Ω)
(2) ∥λf∥∞ = |λ|∥f∥∞ ∀λ ∈ R
(3) ∀f, g ∈ B(Ω), ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞

Theorem 3.1.12 (Uniform continuity preserves continuity). A sequence of continuous functions (fn) :
Ω → R, n ≥ 1 converges uniformly to f : Ω → R. Then f is continuous on Ω.

Proof. fn ⇒ f means

(1) ∀ε > 0, ∃Nε : n > Nε ⇒ ∥fn − f∥∞ <
ε

3
.

Also fn is continuous at x0 ∈ Ω, meaning

(2) ∀ε > 0, ∃δε > 0 : |x− x0| < δ(n)ε ⇒ |fn(x)− fn(x0)| <
ε

3
.

Fix any n > Nε and δ(n)ε > 0. Then
|f(x)− f(x0)| = |f(x)− fn(x) + fn(x)− fn(x0) + fn(x0)− f(x0)|

≤ |f(x)− fn(x)|︸ ︷︷ ︸
< ε

3 by (1)

+ |fn(x)− fn(x0)|︸ ︷︷ ︸
< ε

3 by (2)

+ |fn(x0)− f(x0)|︸ ︷︷ ︸
< ε

3 by (1)

< 3 · ε
3
= ε

□

Notation. Cb(Ω, ∥ · ∥∞) is a linear space of continuous, bounded functions on Ω, equipped with ∥ · ∥∞
norm. (∞-dim normed space)

Theorem 3.1.13 (Completeness). Cb(Ω, ∥ · ∥∞) is a complete normed space, i.e. any Cauchy sequence
(fn) ⊂ Cb(Ω) converges to some f ∈ Cb(Ω).

Without using all the jargon: a uniformly Cauchy sequence of continuous bounded functions converges
to a continuous and bounded function.

Remark. A Cauchy sequence (an) ⊂ (V, ∥ · ∥)︸ ︷︷ ︸
normed space

is such that

∀ε > 0, ∃Nε : n,m > Nε ⇒ ∥an − am∥ < ε.

This definition ensures that the two formulated versions of Theorem 3.1.13 are equivalent.

Proof. fn ⇒ f and fn is continuous ∀n, so by Theorem 3.1.12 f is continuous.
We can pick n : ∥f − fn∥∞ ≤ 1. Then

∥f∥∞∥fn + f − fn∥∞ ≤ ∥fn∥∞ + ∥f − fn∥∞ <∞+ 1 = ∞.

Therefore f is also bounded. □

Example 3.1.14. fn = 1
2nX[−n,n] on R. Then ∥fn∥∞ = 1

2n → 0. So fn ⇒ 0. And
∫∞
−∞ fn = 1 ̸=∫∞

−∞ limn→∞ fn. But good news is on bounded interval this inequality does not occur.

Theorem 3.1.15. fn : [a, b] → R is integrable ∀n and fn ⇒ f : [a, b] → R. Then f is integrable and∫ b

a
fn →

∫ b

a
f . (i.e.

lim
n→∞

∫ b

a

fn =

∫ b

a

lim
n→∞

fn,

limit and integral is interchangeable in this case.)
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Proof. Uniform convergence means

∀ε > 0, ∃Nε : n > Nε ⇒ ∥f − fn∥∞ <
ε

4(b− a)
.

Integrability ∀n means

∀ε > 0, ∃Pn ∈ P : U(fn, Pn)− L(fn, Pn) <
ε

2
,

where we let Pn = {I1, . . . , Im}. Fix n > Nε. Then

U(fn, Pn)− L(fn, Pn) =

m∑
k=1

(
sup
Ik

f − inf
Ik
f

)
|Ik|.

Side computation:
sup
Ik

f = sup
Ik

(fn + f − fn)

≤ sup
Ik

fn + sup
Ik

(f − fn)

≤ sup
Ik

fn + sup
Ik

|f − fn|

≤ sup
Ik

fn + ∥f − fn∥∞.

Similarly we can get a lower bound for inf
Ik
f , namely inf

Ik
fn − ∥f − fn∥∞. So

m∑
k=1

(
sup
Ik

f − inf
Ik
f

)
|Ik| ≤

m∑
k=1

(
sup
Ik

fn − inf
Ik
fn

)
|Ik|︸ ︷︷ ︸

< ε
2 by integrability

+2

m∑
i=1

∥f − fn∥∞︸ ︷︷ ︸
< ε

4(b−a)
by uniform convergence

|Ik|

<
ε

2
+ 2

ε

4(b− a)
(b− a) = ε,

which implies integrability of f .
Now ∣∣∣∣∣

∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|fn − f |

≤
∫ b

a

∥fn − f∥∞ this is why we need bounded

= ∥fn − f∥∞︸ ︷︷ ︸
→0

(b− a).

So
∫ b

a
fn →

∫ b

a
f . □

3.2. Functions of 2 variables.

Definition 3.2.1. f : Ω ⊂ R2 → R is continuous at x ∈ Ω if

∀ε > 0, ∃δ(ε, x) > 0 : (y ∈ Ω, |x− y|︸ ︷︷ ︸
Euclidean distance

< δ) ⇒ |f(x)− f(y)|︸ ︷︷ ︸
absolute value

< ε.

This is the same with previous definition of continuity, only 2-variable.

Definition 3.2.2. f : Ω ⊂ R2 → R is uniformly continuous on Ω if

∀ε > 0, ∃δε : (x, y ∈ Ω : |x− y| < δε) ⇒ |f(x)− f(y)| < ε.

This is the same with Definition 1.1.13.

Theorem 3.2.3. Ω ⊂ R2 closed and bounded. If f : Ω → R is continuous then it’s uniformly continuous.

Hint for proof. Use Bolzano-Weierstrass theorem for bounded sequences in R2. (Similar to proof of
Theorem 1.1.14.) □

Theorem 3.2.4. Let f : [a, b]× [c, d] → R be continuous. Define I : [c, d] → R, t 7→
∫ b

a
f(x, t) dx. Then I

is continuous on [c, d].
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Proof. We know [a, b]× [c, d] is closed and bounded. Then f is uniformly continuous. Fix any t0 ∈ [c, d].
Then

|I(t)− I(t0)| ≤
∫ b

a

|f(x, t)− f(x, t0)| dx.

Uniform continuity means ∀ε > 0, ∃δε > 0 :

(|(x, t)− (x0, t0)| < δε, (x, t), (x0, t0) ∈ [a, b]× [c, d]) ⇒ |f(x, t)− f(x0, t0)| <
ε

b− a
.

Now pick any t : |t− t0| < δε. Then |(x, t0)− (x, t)| < δε. So

|I(t)− I(t0)| <
∫ b

a

ε

b− a
= ε,

i.e. I is continuous at t0 by definition. □

Theorem 3.2.5. f, ∂f∂t : [a, b] × [c, d] → R are continuous. Then t 7→
∫ b

a
f(x, t) dx is differentiable on

[c, d] and
∂

∂t

∫ b

a

f(x, t) dx =

∫ b

a

∂

∂t
f(x, t) dx.

Proof. Define

F (t) :=

∫ b

a

f(x, t) dx

and

G(t) :=

∫ b

a

∂f

∂t
(x) dx.

We would like to show that F is differentiable on (c, d) and F ′ = G.
We write ∣∣∣∣F (t+ h)− F (t)

h
−G(t)

∣∣∣∣ dx =

∣∣∣∣∣
∫ b

a

f(x, t+ h)− f(x, t)

h
−G(t)

∣∣∣∣∣ dx
and since f(x, ·) is continuous and differentiable on [c, d], we can apply MVT and the above is∣∣∣∣∣

∫ b

a

∂f

∂t
(x, τ)− ∂f

∂t
(x, t)

∣∣∣∣∣dx
for some τ ∈ [t, t+ h]. But ∂f

∂t is continuous on closed bounded interval [a, b]× [c, d], so we have uniform
continuity. Therefore ∀ε > 0, ∃δε :

|τ − t| < δε ⇒
∣∣∣∣∂f∂t (x, τ)− ∂f

∂t
(x, t)

∣∣∣∣ < ε

b− a
.

So pick |h| < δε, we have ∣∣∣∣F (t+ h)− F (t)

h
−G(t)

∣∣∣∣ dx < ∫ b

a

ε

b− a
dx = ε.

Take lim suph→0 and lim infh→0 of F (t+h)−F (t)
h . They are equal to each other since ε is arbitrary. So

lim
h→0

F (t+ h)− F (t)

h
= G(t).

□

Theorem 3.2.6 (Fubini). Let f : [a, b]× [c, d] → R be continuous. Then∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

Example 3.2.7 (Why is this useful?). Consider F : [0,∞)× R → R continuous. Fix any n ∈ N, c ∈ R+.
Then (x, y) 7→ x2n+1F (x2, y) is continuous. We want to calculate∫ c

−c

(∫ b

a

x2n+1F (x2, y) dy

)
dx.

But x2n+1 is odd, so is x2n+1F , so
∫ c

−c
x2n+1F (x2, y) dx is zero. Using Fubini we reverse the order and

answer is immediately 0.
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Proof. Define

x 7→
∫ d

c

f(x, y) dy

and

y 7→
∫ b

a

f(x, y) dx.

They are continuous and therefore integrable by Theorem 3.2.4. So both sides of the theorem are
well-defined.

Let

F (t) :=

∫ t

a

(∫ d

c

f(x, y) dy

)
dx−

∫ d

c

(∫ t

a

f(x, y) dx

)
dy,

where t ∈ [a, b]. We would like to show that F (b) = 0.
What do we know?
(1) F (a) = 0 by conventional generalisation of FTC
(2) F ∈ C[a, b], since both terms are continuous, first by FTC, second: (t, y) 7→

∫ t

a
f(x, y) dx is

continuous as a function of 2 variables: since f is continuous therefore uniformly continuous, in
particular f is bounded, i.e. ∃M > 0 : |f | ≤M . We write∣∣∣∣∫ t

a

f(x, y) dx−
∫ t0

a

f(x, y0) dx

∣∣∣∣ = ∣∣∣∣∫ t

a

(f(x, y)− f(x, y0)) dx−
∫ t0

t

f(x, y0) dx

∣∣∣∣
≤
∫ t

a

|f(x, y)− f(x, y0)| dx+

∣∣∣∣∫ t0

t

f(x, y0) dx

∣∣∣∣
≤

∫ t

a

|f(x, y)− f(x, y0)| dx︸ ︷︷ ︸
estimate it with uniform continuity of f

+M | t− t0︸ ︷︷ ︸
→0

|.

So by Theorem 3.2.4 second term is continuous.
(3) By FTC derivative of t 7→

∫ t

a

(∫ d

c
f(x, y) dy

)
dx is

∫ d

c
f(t, y) dy, and by Theorem 3.2.5 derivative

of t 7→
∫ d

c

(∫ t

a
f(x, y) dx

)
dy is equal to∫ d

c

(
∂

∂t

∫ t

a

f(x, y) dx

)
dy =

∫ d

c

f(t, y) dy.

So F ′(t) =
∫ d

c
f(t, y) dy −

∫ d

c
f(t, y) dy = 0.

Therefore by MVT F (b) = 0. □

Example 3.2.8 (Without some assumptions about (x, y) 7→ f(x, y) Fubini fails). Let

I :=

∫ 1

0

(∫ 1

0

x2 − y2

(x2 + y2)2
dy

)
dx

where the 2-variable function is not continuous no matter how you assign the values when x = y = 0. So
consider f defined on (0, 1]× (0, 1] and treat the integrals as improper integrals. Doing it in the defined
order we have ∫ 1

0

(
y

x2 + y2

∣∣∣∣y=1

y=0

)
dx =

∫ 1

0

1

1 + x2
dx =

π

4
,

(do a change of variable: let x(t) = tan−1(t) to get the result), but reversing it we have, by symmetry, −π
4 .

Notation. Cn means set of continuous functions that are n time differentiable with its nth derivative
continuous.

Example 3.2.9 (Motivation for next theorem). We already know fn
C1

⇒ f doesn’t imply that f is

differentiable. Moreover, take

fn(x) =

(
x2 +

1

n

) 1
2

∈ C∞(R),

then fn ⇒ |x| since we can bound x2 + 1
n by

(
|x|+ 1√

n

)2
and we have

fn(x)− |x| ≤ |x|+ 1√
n
− |x| = 1√

n
→ 0 ∀x ∈ R.
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But |x| is not differentiable at 0.

x

fn(x)

Theorem 3.2.10. (fn) ⊂ C1[a, b]. Suppose fn −→ f : [a, b] → R and f ′n ⇒ g : [a, b] → R. Then
f ∈ C1[a, b] and f ′ = g.

In other words, (
lim
n→∞

fn

)′
= lim

n→∞
f ′n.

Proof. We have (f ′n) ⊂ C[a, b]. Since g is the uniform limit, g ∈ C[a, b] is integrable. We write∫ x

a

g =

∫ x

a

lim
n→∞

f ′n =︸︷︷︸
Theorem 3.1.15

lim
n→∞

∫ x

a

f ′n =︸︷︷︸
FTC

lim
n→∞

(fn(x)− fn(a)) = f(x)− f(a),

i.e. f(x) = f(a) +
∫ x

a
g, so f ′(x) = g(x) by FTC. Since g is continuous, f ∈ C1[a, b]. □

3.3. Series of functions. Let (fn) be a sequence of functions on Ω. Then a series of functions is also a
function

x 7→
∞∑

n=1

fk(x), x ∈ Ω.

Definition 3.3.1. Let

Sn :=

n∑
k=1

fk : Ω → R, n ≥ 1

be the sequence of partial sums. We say that
∞∑
k=1

fk converges to S : Ω → R pointwise (uniformly) if

Sn → (⇒)S.

Theorem 3.3.2. Let (fn) be a sequence of integrable functions on [a, b] such that
∞∑
k=1

fk converges

uniformly. Then
∞∑
k=1

fk : [a, b] → R

is integrable and ∫ b

a

∞∑
k=1

fk =

∞∑
k=1

∫ b

a

fk.

i.e. series can be integrated term by term.

Proof. Consider

Sn :=

n∑
k=1

fk, S :=

∞∑
k=1

fk

and we know Sn ⇒ S. By linearity Sn is integrable. By Theorem 3.1.15, S is then integrable, and
moreover ∫ b

a

S = lim
n→∞

∫ b

a

Sn.
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So ∫ b

a

∞∑
k=1

fk = lim
n→∞

∫ b

a

n∑
k=1

fk =︸︷︷︸
linearity

lim
n→∞

n∑
k=1

∫ b

a

fk =

∞∑
k=1

∫ b

a

fk.

□

Example 3.3.3 (Do everything by hand). Let λ > 0 and define

S(x) :=

∞∑
k=1

e−λkx, x ∈ [1,∞).

What is
∫∞
1
S?

Notice that the series converges uniformly on [1,∞): let

Sn(x) :=

n∑
k=1

e−λkx,

then

|Sn(x)− Sm(x)| =

∣∣∣∣∣
n∑

k=m+1

e−λkx

∣∣∣∣∣ ≤ e−λm

∣∣∣∣∣
∞∑
k=0

e−λk·1

∣∣∣∣∣→ 0

since it’s geometric. So it’s Cauchy therefore it’s uniformly convergent. Therefore we can integrate it term
by term: ∫ ∞

1

S =

∫ ∞

1

∞∑
k=1

e−λkx dx =

∞∑
k=1

∫ ∞

1

e−λkx dx

=

∞∑
k=1

1

λk
e−λk =

1

λ

∞∑
k=1

1

k

(
e−λ

)k
=

1

λ
log
(
1− e−λ

)
.

Checking that applying Theorem 3.3.2 here to improper integrals is legitimate is left as an exercise.

Remark. We can then integrate any function given by uniformly convergent Taylor or Fourier series and
set the answer as an infinite sum.

Theorem 3.3.4. (fk) ⊂ C1[a, b] :

∞∑
k=1

fk converges pointwise and
∞∑
k=1

f ′k converge uniformly. Then

x 7→
∞∑
k=1

fk ∈ C1[a, b]

and ( ∞∑
k=1

fk

)′

=

∞∑
k=1

f ′k.

i.e. series can be differentiated term by term.

Proof. Let

Sn :=

n∑
k=1

fk, S :=

∞∑
k=1

fk

Given that Sn → S, S′
n ⇒ g, we have, by Theorem 3.2.10, S ∈ C1[a, b] and S′ = lim

n→∞
S′
n.

We use the fact that (fn) ⊂ C1[a, b] ⇒ Sn =∈ C1[a, b] (algebra of differentiable functions).
Therefore (

n∑
k=1

fk

)′

= lim
n→∞

n∑
k=1

f ′k =

∞∑
k=1

f ′k.

□

Theorem 3.3.5 (Weierstrass M -test). Let (fk) be a sequence of functions on Ω ⊂ R. Suppose ∀k ∈
N, ∃Mk ≥ 0 : |fk| ≤Mk where

∑∞
k=1Mk <∞. Then

∑∞
k=1 fk converges uniformly on Ω.
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Proof.
∞∑
k=1

Mk <∞

if and only if

(
n∑

k=1

Mk

)
is Cauchy if and only if

∀ε > 0, ∃Nε : n,m > Nε ⇒

∣∣∣∣∣
n∑

k=1

Mk −
m∑

k=1

Mk

∣∣∣∣∣ < ε.

Then ∀x ∈ Ω,

|Sn(x)− Sm(x)| =

∣∣∣∣∣
n∑

k=m+1

fk(x)

∣∣∣∣∣ ≤
n∑

k=m+1

|fk(x)| ≤
n∑

k=m+1

Mk < ε.

Therefore (Sn) is Cauchy, therefore uniformly convergent. □

3.4. 3 non-examinable (but exciting!) topics.

3.4.1. Continuous but nowhere differentiable functions. Natural example: trajectory of a Brownian particle
(sample path of a stochastic process known as Brownian motion)

We will explain construction of the Weierstrass function (1872).
The starting point:

ϕ : R → R, x 7→ dist(x,Z)
Our function will be constructed as a limit of the series of piecewise linear functions built out of ϕ.

Remark. Lévy (1950) used this idea for his rigorous construction of Brownian motion.

0.25 0.5 0.75 1

0.5

x

ϕ

It’s sometimes called the Sawtooth function.
Obvious properties:
(1) ϕ is continuous
(2) ϕ is periodic, i.e. ϕ(x+ 1) = ϕ(x) ∀x ∈ R
(3) ϕ is piecewise linear
(4) ϕ′(x) ∈ {±1} at all x where ϕ′ is defined

We can write a formula:

ϕ(x) =


x− ⌊x⌋, ⌊x⌋ ≤ x⌊x⌋+ 1

2

⌊x⌋+ 1− x, ⌊x⌋+ 1

2
< x < ⌊x⌋+ 1

Now define Weierstrass function

f : R → R, x 7→
∞∑

n=0

fn(x), n > 0

where fn(x) =
1

4n
ϕ(4nx). So property 4 still holds, f0 is just ϕ, and f1 is drawn in the same plot above.

Claim. f is continuous on R.
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Proof. We know ∥ϕ∥∞ = 1
2 and

∥fn∥ =

∥∥∥∥ 1

4n
ϕ(4nx)

∥∥∥∥
∞

=
1

4n
sup
R

|ϕ(4nx)| = 1

4n
sup
R

|ϕ| = 1

4n
· 1
2
<

1

4n
.

Moreover,
∞∑
k=0

1

4n
<∞ (geometric),

therefore
∑∞

k=0 fk converges uniformly on R by his own M -test. So
n∑

k=0

fk ⇒
∞∑
k=0

fk = f

and f is continuous by continuity of fk . □

Claim. f is nowhere differentiable.

Proof. We would like to show that for any x0 ∈ R,

lim
h→0

f(x+ h)− f(x)

h

doesn’t exist. It suffices to show that we can find a sequence (hn)n≥0 ⊂ R such that
(1) hn → 0 ,

(2) lim
hn→0

f(x+ hn)− f(x)

hn
doesn’t exist .

Define hn = ± 1

4n+1
where the sign is chosen carefully in such a way that

4nx0, 4
n(x0 + hn) ∈

[
k, k ± 1

2

]
for some k ∈ Z. (These points belong either to

[
k − 1

2 , k
]

or
[
k, k ± 1

2

]
for some integer k. The above is

just shorthand notation. In particular, we are choosing the sign so that the two points are not separated
by a point at which the function is not differentiable.)

0.25 0.5 0.75 1

0.5

• •
×

•
✓

4nx

ϕ(4nx)

Then clearly lim
n→∞

hn = 0, and fn |[x0,x0+hn]
has a constant slope equal to ±1. We then write

(3)
fn(x0 + hn)− fn(x0)

hn
=
ϕ(4nx0 + 4nhn)− ϕ(4nx0)

4nhn
∈ {±1}.

Now fix m ≥ n+ 1, and we have

(4)
fm(x0 + hn)− fm(x0)

hn
=
ϕ(4mx0 +

∈Z︷ ︸︸ ︷
4mhn)− ϕ(4mx0)

4mhn
= 0

since ϕ is periodic with period 1. And for m < n, if fm is not smooth at points x, i.e.

4mx =
k

2
for k ∈ Z,
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then for the same x,

4nx = 4n−m(4mx) = 4n−m

(
k

2

)
=
k′

2

where k′ = 4n−m · k, n ≥ m. This means if m is not smooth then n is not either.
We conclude that the set of points at which fm changes slope is a subset of points where fn changes

slope, n ≥ m. Also, if fn |[x0,x0+hn]
has constant slope then so does fm |[x0,x0+hn]

, n ≥ m.
In plain English, the indifferentiable points of fn are also indifferentiable points of fn+1. Finally, we

write
f(x+ hn)− f(xn)

hn
= lim

N→∞

N∑
m=0

fm(x0 + hn)− fm(x0)

hn

=

n∑
m=0

fm(x0 + hn)− fm(x0)

hn
by (4)

=

n∑
m=0

εm by (3)

where εm ∈ {±1}. Taking the limits to get to derivative, we have

lim
n→∞

f(x+ hn)− f(xn)

hn
=

∞∑
m=0

εm

which diverges! Hence desired result. □

3.4.2. Space-filling curves. Aim: construct a surjective, continuous map from [0, 1] to [0, 1]× [0, 1].

Surjective is not that hard: define γ0 : [0, 1] → [0, 1]2 like this: write numbers in [0, 1] as 0.a1a2a3 . . .
where ai ∈ {0, 1, . . . , 9}. Then take the two subsequences and form a ordered pair, an odd and an even:
(0.a1a3a5 . . . , 0.a2a4a6 . . .). It’s in fact bijective.

But it’s not continuous! So is it possible to reach the aim? The answer is of course positive.
We will review Hilbert’s construction of the curve (1891), the very first example is due to Peano (1890),

as a uniformly convergent sequence of piecewise linear curves.
Terminology:

• A curve in R2 is a continuous map β : [0, 1] → R2, t 7→ β(t) = (β1(t), β2(t))
• It’s useful recalling that β is continuous at t0 ∈ [0, 1] if

∀ε > 0, ∃δε > 0 : |t− t0| < δε ⇒ |β(t)− β(t0)| < ε,

and this if and only if β1, β2 : R → R are continuous
• The image of β, Im(β) = β([0, 1]) ⊂ R2

• A curve γ : [0, 1] → [0, 1]2 is called space-filling or SPC if Im(γ) = [0, 1]2.
We now define the Hilbert curve

γ := lim
n→∞

γn

where γn ⇒ γ. And here’s the construction. Denote unit square as S0.
(1) Divide into four, connect centres of squares counterclockwise, and connect the two top centres

with two vertices. Before parameterising γ1, we label the smaller squares as S0.0, S0.1, S0.2, S0.3

counterclockwise. Now notice S0,n ⊂ S0. We want our parametrisation satisfies that γ1
([
0, 14

])
⊂

S0,0, γ1
([

1
4 ,

1
2

])
⊂ S0,1, γ1

([
1
2 ,

3
4

])
⊂ S0,2, γ1

([
3
4 , 1
])

⊂ S0,3. We can then write:

γ1(t) =



(2t, 1− 2t) , 0 ≤ t <
1

8(
1

4
, 1− 2t

)
,

1

8
≤ t <

3

8(
2t− 1

2
,
1

4

)
,

3

8
≤ t <

5

8(
3

4
, 2t− 1

)
,

5

8
≤ t <

7

8

(2t− 1, 2t− 1) ,
7

8
≤ t ≤ 1
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1 2

0 3

γ1

0.11 0.22

0.330.00

0.03
0.10 0.23

0.30

0.12 0.21

0.01 0.32

0.02
0.13 0.20

0.31

γ2

(2) Now create 4 copies of Im(γ1) and connect them together in 4 divided squares to create γ2:
The lower two are just translations, but we have to rotate for the upper two (π2 counterclockwise

and clockwise respectively) to keep the curve starting from top left and end at top right. To
make sure the direction of parameterisation makes sense, we also have to reflect horizontally. And
finally we need to scale it down by a factor of 2 to make it a unit square.

We again, as before, enumerate the 4 squares of size 1
2 × 1

2 as S0.m, 0 ≤ m ≤ 3. We also have
16 squares of size 1

4 × 1
4 , and we enumerate them as S0.m1m2 , 0 ≤ m1,m2 ≤ 3, where m1 is the

index of the 1
2 × 1

2 squares and m2 is similar to m as in how we enumerate S0.m’s. Note

S0,m1,m2 ⊂ S0,m1 ∀m1,m2.

For parametrisation of γ2, we notice

γ2(t) =



A0γ1(4t), 0 ≤ t ≤ 1

4

A1γ1(4t− 1),
1

4
≤ t ≤ 1

2

A2γ1(4t− 2),
1

2
≤ t ≤ 3

4

A3γ1(4t− 3),
3

4
≤ t ≤ 1

,

(basically speed it up in the smaller squares and impose lags to make sure every part of it satisfy
the original parametrisation with t ranging from 0 to 1). So we don’t need to invent a new
parametrisation. Notice γ2 goes through all 16 squares and spend 1

16 of the time in each of it. Let
us treat 0.m1m2 now as quaternary fractions:

0.m1m2 = m1 × 4−1 +m2 × 4−2 =
m1

4
+
m2

16
,

since we keep dividing by 4, it’s better to use base 4 than base 10. Notice by construction

γ2

(
[m1m2,m1m2 + 1]

1

42

)
⊂ S0.m1m2

where m1m2, a quaternary number, is equal to m1 × 41 +m2 × 40 = 4m1 +m2.
(3) Now we can construct γn+1 from γn generally, in a way exactly the same as how γ2 is constructed

from γ1: enumerate counterclockwise, translate, rotate, reflect and scale. And we have a new
index for smallest squares, namely S0.m1m2...mn

. Note S0.m1...mn
⊂ S0.m1...mk

for any k ≤ n.
Parametrisation of γn+1 is again recursive like what we wrote for γ2.

Now we have γn : [0, 1] → [0, 1]2 such that
• it’s piecewise linear, continuous, passing through centre of each 4n squares of size 1

2n

• γn
([
0.m1 . . .mn, 0.m1 . . .mn + 1

4n

])
⊂ S0.m1...mn

.
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We need to establish
• The limit lim

n→∞
γn exists and is continuous

• γ is space-filling.
Let’s do this part by part.

(1) We know γn are continuous, so to prove γ is continuous we only need to construct uniform
continuity, but we don’t know the limit, so instead we construct uniform Cauchy which is
equivalent.

Fix t ∈ [0, 1]. For any n ∈ N,

∃m1, . . . ,mn ∈ {0, 1, 2, 3} : t ∈
[
0.m1 . . .mn+1, 0.m1 . . .mn+1 +

1

4n+1

]
⊂
[
0.m1 . . .mn, 0.m1 . . .mn +

1

4n

]
.

Since clearly
0.m1 . . .mn+1 ≥ 0.m1 . . .mn

and

0.m1 . . .mn+1 +
1

4n+1
≤ 0.m1 . . .mn +

1

4n+1
+

3

4n+1
= 0.m1 . . .mn +

1

4n
.

This means γn(t), γn+1(t) ∈ S0.m1...mn
. So |γn+1(t) − γn(t)| ≤

√
2

2n , length of diagonal. So
∀m,n ∈ N, ∀t ∈ [0, 1], we have

|γn+m(t)− γn(t)| ≤ |γn+m(t)− γn+m−1(t)|+ |γn+m−1(t)− γn+m−2(t)|+
· · ·+ |γn+1(t)− γn(t)|

≤
√
2
(
2−n−m+1 + 2−n−m + · · ·+ 2−n+1

)
≤

√
2 · 2−n+1

∞∑
k=0

2−k

︸ ︷︷ ︸
geometric=2

→ 0.

as desired.
(2) We now want ∀p ∈ [0, 1]2, ∃t0 ∈ [0, 1] : γ(t0) = p. By construction, ∀d > 0, ∃t ∈ [0, 1] :

|γ(t) − p| < d: how? Consider partition of [0, 1]2 by 4n squares of size 1
2n . Then ∀τn ∈[

0.m1 . . .mn, 0.m1 . . .mn + 1
4n

]
, γn(τn) ∈ S0.m1...mn

. Choose 0.m1 . . .mn such that S ∈ S0.m1...mn
.

Then |γn(τn)− p| <
√
2

2n . So

|γ(τn)− p| ≤ |γ(τn)− γn(τn)|+ |γn(τn)− p| ≤ ∥γ − γn∥∞ +

√
2

2n
→ 0.

Now set d = 1
n , n ∈ N. Then we are dealing with a sequence of time (tn) : limn→∞ | γ(tn)− p︸ ︷︷ ︸

≤ 1
n

| = 0.

Equivalently, lim
n→∞

γ(tn) = p. But (tn)n≥1 doesn’t have to converge. But! (tn) ⊂ [0, 1] which is
bounded closed. So apply Bolzano–Weierstrass to get a subsequence tnk

. Then lim
k→∞

tnk
= t0 ∈

[0, 1]. So

p = lim
k→∞

γ (tnk
) =︸︷︷︸

continuity

γ

(
lim
k→∞

tnk

)
= γ(t0).

Finally we ask: is γ bijective? It’s actually not injective, since there is a dense set of points of self
intersection: γ(t1) = γ(t2) but t1 ̸= t2.

Theorem 3.4.1 (Netto’s). A bijection between two manifolds of different dimensions (hypercubes in Rn)
cannot be continuous.

3.4.3. Cantor function, aka Devil’s staircase. Let (fn)n≥0 be a sequence of functions on [0, 1]. f0(x) := x.
Then

fn+1(x) :=



1

2
fn(3x) 0 ≤ x ≤ 1

3
1

2

1

3
< x <

2

3
1

2
+

1

2
fn(3x− 2)

2

3
≤ x ≤ 1
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1
3

2
3

1

1
4

1
2

3
4

1

y

x f0
f1
f2

Observations:
• fn : [0, 1] → [0, 1]
• increasing
• fn+1(0) =

1
2fn(0) =

1
2

2
fn−1(0) = · · · = 1

2

n+1
f0(0) = 0

• fn+1(1) =
1
2 + 1

2fn(1) =︸︷︷︸
induction

= 1
2 + 1

2 = 1

Claims:
(1) fn ∈ C[0, 1] ∀n ≥ 0.

Proof. Use induction. Obviously f0 ∈ C[0, 1]. Now suppose fn is continuous. Then fn+1 is
continuous on

[
0, 13

)
∪
(
1
3 ,

2
3

)
∪
(
2
3 , 1
]

by construction. We then only need to check two points
x = 1

3 ,
2
3 .

We have

lim
x↑ 1

3

fn+1(x) = lim
x↑ 1

3

1

2
fn(3x) =

1

2
lim
x↑1

fn(x) =
1

2
fn(1) =

1

2
,

and similarly limx↓ 1
3
fn+1(x) =

1
2 . Two limits agree so continuous at 1

3 . Similarly it’s continuous
at 2

3 . □

(2) The sequence (fn) ∈ C[0, 1] is uniformly Cauchy. Therefore the limit f := limn→∞ fn is continuous
on [0, 1], which is defined as Cantor function.

Proof. We have

∥fn+1 − fn∥∞ ≤ max

 sup
[0, 13 ]

|fn+1(x)− fn(x)|, sup
[ 13 ,

2
3 ]
|fn+1(x)− fn(x)|︸ ︷︷ ︸

0

, sup
[ 23 ,1]

|fn+1(x)− fn(x)|


= max

1

2
sup
[0, 13 ]

|fn(3x)− fn−1(3x)| ,
1

2
sup
[ 23 ,1]

|fn(3x)− fn−1(3x)|


= max

{
1

2
sup
[0,1]

|fn(x)− fn−1(x)|,
1

2
sup
[0,1]

|fn(x)− fn−1(x)|

}

=
1

2
sup
[0,1]

|fn(x)− fn−1(x)|

=
1

2
∥fn − fn−1∥∞︸ ︷︷ ︸

≤C

.

If we iterate this we have

∥fn+1 − fn∥∞ ≤ 1

2
∥fn − fn−1∥∞ ≤ 1

2

2

∥fn−1 − fn−2∥∞ ≤ · · · ≤ 1

2

n

∥f1 − f0∥∞.
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So ∀n,m ∈ N,

∥fn+m − fn∥∞ ≤ ∥fn+m − fn+m−1∥∞ + ∥fn+m−1 − fn+m−2∥+ · · ·+ ∥fn+1 − fn∥∞

≤ C

(
1

2

n+m

+
1

2

n+m−1

+ · · ·+ 1

2

n+1)
≤ 1

2

n+1

C

∞∑
k=1

1

2

k

︸ ︷︷ ︸
geometric

→ 0.

□

Properties of Cantor function:

(1) f : [0, 1] → [0, 1] is continuous, monotonically increasing and f(0) = 0, f(1) = 1. By IVT f is
surjective. Also by Theorem 1.1.15 it’s integrable.

(2) Take limn→∞ fn we have

f(x) :=



1

2
f(3x) 0 ≤ x ≤ 1

3
1

2

1

3
< x <

2

3
1

2
+

1

2
f(3x− 2)

2

3
≤ x ≤ 1

,

a functional equation for f . Therefore∫ 1
3

0

f(x) dx =
1

2

∫ 1
3

0

f(3x) dx =
1

6

∫ 1

0

f(x) dx

and ∫ 1

2
3

f(x) dx =
1

6
+

1

2

∫ 1

2
3

f(3x− 2) dx =
1

6
+

1

6

∫ 1

0

f(x) dx

so
1

6

∫ 1

0

f +
1

2
× 1

3
+

1

6
+

1

6

∫ 1

0

f =

∫ 1

0

f,

hence
∫ 1

0
f = 1

2 .
(3) We know f is constant on E0 =

(
1
3 ,

2
3

)
. Obviously it’s also constant on E1,1 = 1

3E0, E1,2 =
2
3 + 1

3E0, and f |E1,1
= 1

4 , f |E1,2
= 3

4 . Moreover they do not overlap since f is continuous. Note
|E0| = 1

3 , |E1,1| = |E1,2| = 1
9 .

More generally, if f |E is constant, then it’s also constant on 1
3E,

2
3 + 1

3E. We iterate this and
after k steps we have

E0, E1,1, E1,2, E2,1, E2,2, E2,3, E2,4, . . . , Ek,1, . . . , Ek,2k ,

a total of 2k+1 − 1 intervals of length 1
3 ,

1
32 , . . . ,

1
3k+1 , on which the value of f are

m

2k+1
, 1 ≤ m ≤ 2k+1 − 1,

i.e. distinct. Therefore they are disjoint. The miracle here is that the total length of these intervals
is

1

3
+ 2

1

32
+ 4

1

33
+ · · · =

∞∑
k=0

1

3
· 2
3

k

=
1
3

1− 2
3

= 1.

The set C := [0, 1]\E is called Cantor set. Its total length is zero, yet f : C → [0, 1] is surjective: a
standard example in measure theory, fractal geometry, analysis, ...

Remark. Please take a look at the exercises at the end of week 6 notes, giving a more analytic characteristic
of Cantor set and a formula for Cantor function.
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4. Complex analysis

4.1. Review of complex numbers. C = {x+ iy, x, y ∈ R} where i2 = 1. This gives a field of complex
numbers, in other words you can multiply and divide (nonzero denominators).

x

y

−y

ℜz

ℑz

Notation (Conjugate). z := x− iy

Notation (Modulus). |z| :=
√
x2 + y2

Recall these properties:
(1) z = z
(2) z + w = z + w
(3) zw = zw
(4) zz = |z|2 and |z| = |z|

Note there is an isomorphism between R2 ∼= C:
(
x
y

)
=

(
ℜz
ℑz

)
. This is norm preserving: |z| =

∥∥∥∥(xy
)∥∥∥∥

R2

(Euclidean norm).

4.2. Introduction.

Definition 4.2.1. (zn)n∈N ⊂ C converges to z0 ∈ C if

∀ε > 0, ∃Nε : n > Nε ⇒ |zn − z0| < ε.

Equivalently, lim
n→0

|zn − z0| = 0.

Definition 4.2.2. Ω ⊂ C is open if

∀z ∈ Ω, ∃r > 0 : Br(z) = {w ∈ C : |w − z| < r} ⊂ Ω.

where B is called an open ball (which is open).

Definition 4.2.3. Ω ⊂ C is closed if ΩC := C\Ω is open.

Notation (Closed ball). Br(z) = {w ∈ C : |w − z| ≤ r}
Definition 4.2.4. K ⊂ C is sequentially compact if for any (zk)k∈N ⊂ K there is a subsequence converging
in K. (Sequentially compact ⇔ closed and bounded)

Definition 4.2.5. A C-valued function on C is a map f : C → C which can be written as z = x+ iy 7→
f(z) = u(x, y) + iv(x, y).

So f can be thought as a function R2 → R2,

(
x
y

)
7→
(
u(x, y)
v(x, y)

)
.

Definition 4.2.6. f : Ω ⊂ C → C is continuous at z0 ∈ Ω if

∀ε > 0, ∃δ > 0 : (z ∈ Ω, |z − z0| < δ) ⇒ |f(z)− f(z0)| < ε.

Equivalently, lim
z→z0

f(z) = f(z0).

Definition 4.2.7. f : Ω︸︷︷︸
unless state otherwise this is open

→ C is complex differentiable at z ∈ Ω if

lim
h→0

f(z + h)− f(z)

h

where h ∈ C exists. In this case the limit is called the (complex) derivative, denoted f ′(z).
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Recall in context of multivariable real functions, f : Rn → Rk is differentiable at p ∈ Rn if ∃Df(p) ∈
L(Rn,Rk) :

lim
h→0

∥f(p+ h)− f(p)−Df(p)h∥k
∥h∥n

= 0

We cannot divide by h as Rn is not a field, but C is a field, so formula in Definition 1.1.13 is well-defined,
albeit it looks more like a definition of ∂f

∂x . Hence it must exist along any curve passing through zero.
This means we can derive the simplest necessary condition for existence of complex derivative:

lim
∆x→0

lim
∆y→0

f(z + h)− f(z)

h
= lim

∆y→0
lim

∆x→0

f(z + h)− f(z)

h

where h = ∆x+ i∆y.
Let f(z) = u(x, y) + iv(x, y). Then

lim
∆x→0

f(z +∆x)− f(z)

∆x
= lim

∆y→0

f(z + i∆y)− f(z)

i∆y

lim
∆x→0

(u(x+∆x, y)− u(x, y) + i(v(x+∆x, y)− v(x, y))

∆x

= lim
∆y→0

u(x, y +∆y)− u(x, y) + i(v(x, y +∆y)− v(x, y))

i∆y

so if we denote partial derivative of u : R2 → R with respect to x, we can write
∂u

∂x
(x, y) + i

∂v

∂x
(x, y) =

1

i

(
∂u

∂y
(x, y) + i

∂v

∂y
(x, y)

)
,

i.e. 
∂u

∂x
(x, y) =

∂v

∂y
(x, y)

∂v

∂x
(x, y) = −∂u

∂y
(x, y)

This is called Cauchy–Riemann equations.

Example 4.2.8. (1) f(z) = z, z ∈ C, the identity map. Then ∀z ∈ C,

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

z + h− z

h
= 1.

So f ′(z) = 1.
(2) g(z) = z, z ∈ C, conjugation of identity map. Then

lim
h→0

g(z + h)− g(z)

h
= lim

h→0

h

h

which we claim does not exist. Take h = ρeiϕ, then h
h = e−2iϕ depends on angle of approach.

It’s also reasonable to check if Cauchy–Riemann can verify of this non-differentiability. We
write g = u+ iv where u(x, y) = x and v(x, y) = −y. Then ux = 1 ̸= vy = −1.

Remark. However, as a function on R2 → R2,
(
x
y

)
7→
(
x
−y

)
is differentiable by existence and

continuity of its partial derivatives.

Remark. [Demystification]

• If f ′(z) := lim
h→0

f(x+ h)− f(x)

h
exists then clearly f is continuous at z.

• Let h(∆x) :=
(
∆x
0

)
where ∆x→ 0. Notice that

f ′(z) = lim
∆x→0

f(z + h∆x)− f(z)

h∆x

is just the partial derivative ux(x, y) + ivx(x, y) which by linearity is just
∂

∂x
f(z). By similar

argument we conclude that if f ′(z) exists then it equals both partial derivatives
∂

∂x
f(z) and

1

i

∂

∂y
f(z).

• (zn)′ = nzn−1



32 OLEG ZABORONSKI

Definition 4.2.9. f : Ω ⊂ C → C is analytic or holomorphic at z ∈ Ω if ∃U ∈ Ω, an open neighbourhood
of z where f is complex differentiable at its every point.
f is analytic in Ω ⊂ C if it is differentiable at every point of Ω.

Definition 4.2.10. f : C → C is entire if it is analytic at every z ∈ C.

Remark. We can think of U as Br(z) for some r > 0.

Why do we need these definitions?

Example 4.2.11 (Functions complex differentiable at one point but not analytic). Consider f : z 7→ |z|2.
It’s differentiable at 0 since

lim
h→0

h · h
h

= 0.

But if we write f = u + iv then u = x2 + y2, v = 0. So ux = 2x, vy = 0, uy = 2y, vx = 0, i.e.
Cauchy–Riemann is only satisfied when x = y = 0. Therefore f is not analytic at z = 0.

We have the knowledge of previous Remark. But actually Cauchy–Riemann gives us something more.

4.3. Algebraic meaning of Cauchy–Riemann. Consider z, z : R2 → R, z = x+ iy and z = x− iy.
Then

x =
z + z

2
, y =

z − z

2
.

By chain rule,
∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1

2

∂

∂x
− i

2

∂

∂y
.

Suppose f is differentiable at z. Then by Cauchy–Riemann
∂

∂z
f(z, z) =

1

2
(ux + ivx) +

i

2
(uy + ivy) =

1

2
(ux − vy) +

i

2
(uy + vx) = 0.

i.e. f doesn’t depend on z, so we can simply write f(z) (which we are interested in) instead of f(z, z.
Soon we will find out that the reverse is also true: complex differentiability ⇔ differentiability in R2 +

Cauchy–Riemann (or lack of dependence on z).

Let ϕ : C → M2(R), z = (a+ ib) 7→
(
a −b
b a

)
. It’s an injection, and ϕ : C → Im ϕ is of course then a

bijection. But it’s also an isomorphism:

ϕ(z1 + z2) =

(
x1 + x2 −y1 − y2
y1 + y2 x1 + x2

)
=

(
x1 −y1
y1 x1

)
+

(
x2 −y2
y2 x2

)
= ϕ(z1) + ϕ(z2)

and
ϕ(z1z2) =

(
x1x2 − y1y2 −x1y2 − y1x2
x1y2 + y1x2 x1x2 − y1y2

)
=

(
x1 −y1
y1 x1

)(
x2 −y2
y2 x2

)
= ϕ(z1)ϕ(z2).

Let ψ : C → R2, x+ iy 7→
(
x
y

)
which is norm preserving: |z| = |ψ(z)|R2 . Note that it respects ϕ:

ψ(z1z2) =

(
x1x2 − y1y2
x1y2 + y1x2

)
= ϕ(z1)ψ(z2) =

(
x1 −y1
y1 x1

)(
x2
y2

)
,

so it’s an isomorphism between modules C, R2.

Theorem 4.3.1. f : Ω → C is complex differentiable at z ∈ Ω if and only if it is differentiable at (ℜz,ℑz)
as a function Ω ⊂ R2 → R and its partial derivatives satisfy Cauchy–Riemann.

Proof. ⇒: Suppose

lim
h→0

∣∣∣∣f(z + h)− f(z)− f ′(z)h

h

∣∣∣∣ = 0.

By norm-preserving of ψ we have

lim
h→0

|ψ (f(z + h)− f(z)− f ′(z)h) |
|ψ(h)|

= 0.

so
lim
h→0

|ψf(z + h)− ψf(z)− ψ(f ′(z)h)|
|ψ(h)|

= 0.

where ψ(f ′(z)h) = ϕ(f ′(z)) · ψ(h) as we’ve seen. This means ψf is differentiable at ψ(z) =
(
ℜz
ℑz

)
with derivative ϕ(f ′(z)). Satisfaction of Cauchy–Riemann was previously checked.
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⇐: Suppose ψf =

(
u
v

)
is differentiable at

(
x
y

)
= ψ(z). We can write

lim
h→0

|ψf(z + h)− ψf(z)−Dψf(z) · ψ(h)|R2

|ψ(h)|R2

where

Dψf(z) =

(
ux uy
vx vy

)
the Jacobian (seen in MA259)

=

(
ux −vx
vx ux

)
by Cauchy–Riemann

= ϕ(ux + ivx) by definition
= ϕ(fx)

So by norm-preserving of ψ and ϕ(fx(z))ψ(h) = ψ(fx(z) · h) we can write

lim
h→0

∣∣∣∣f(z + h)− f(z)− fx(z)h

h

∣∣∣∣ = 0,

i.e. f is complex differentiable at z and f ′(z) = fx(z) =
∂
∂z f(z).

□

Theorem 4.3.2. Let f, g : Ω → C be analytic. Then
• (fg)′ = f ′g + fg′

•
(
f

g

)
=
f ′g − fg′

g2
(g ̸= 0)

• (f(g))′ = f ′(g) · g′ (Im g ⊂ Ω)

Example 4.3.3. f : z → zn on C, n ∈ N0. f is entire and f ′(z) = nzn−1. We can see this since
(x, y) 7→ (x+ iy)n is a polynomial with respect to x, y, which is differentiable, and

∂

∂z
zn = nzn−1 ∂z

∂z
= nzn−1

(
1

2
× 1− i

2
× (−i)

)
= nzn−1 × 0 = 0.

So Cauchy–Riemann is satisfied.

4.4. Power series.

Definition 4.4.1. (an) ⊂ C.
∞∑

n=0

an converges if

(
k∑

n=0

an

)
converges in C.

Definition 4.4.2.
∞∑

n=0

an converges absolutely if
∞∑
k=0

|an| =
∞∑
k=0

√
anan converges.

Theorem 4.4.3 (Root test).

lim sup
n→∞

|an|
1
n


> 1 ⇒

∑
n

an diverges

< 1 ⇒
∑
n

an converges (absolutely)

Theorem 4.4.4 (Ratio test). (an) ⊂ C and an ̸= 0 eventually. Then

• lim sup
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 ⇒
∑
n

an converges (absolutely)

•
∣∣∣∣an+1

an

∣∣∣∣ ≥ 1 eventually ⇒
∑
n

an diverges

• If L := lim
n→∞

|an+1|
an

exists then L > 1 ⇒ divergence, L < 1 ⇒ convergence

Remark. Above 2 theorems are proved using comparison with geometric series

∞∑
k=0

zn =


1

1− z
|z| < 1

divergence |z| > 1
z ∈ C
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Theorem 4.4.5. Given (an) ⊂ C, then ∃R ∈ [0,∞] :

∞∑
k=0

anz
n converges ∀z when |z| < R and diverges

∀z when |z| > R. R is called the radius of convergence, and

R =
1

lim sup
n→∞

|an|
1
n

,

and we assert R = ∞ when lim sup
n→∞

|an|
1
n = 0.

Proof. This formula is directly from applying the root test to
∑∞

n=0 anz
n. By linearity of lim sup we write

lim sup
n→∞

|anzn|
1
n = |z| lim sup

n→∞
|an|

1
n


> 1 ⇒

∑
n

an diverges

< 1 ⇒
∑
n

an converges (absolutely)

then if we denote R as stated in the theorem we have desired result. □

Theorem 4.4.6. Let R > 0 be the radius of convergence of
∞∑

n=0

anz
n. Then ∀0 < r < R,

∞∑
n=0

anz
n

converges uniformly with respect to z on Br(0).

Proof. Exercise. (Identical to the real case.) □

Theorem 4.4.7. Let
∞∑

n=0

anz
n have the radius of convergence R > 0. Then z 7→

∞∑
n=0

anz
n is analytic in

BR(0). Moreover, ( ∞∑
n=0

anz
n

)′

=

∞∑
n=1

nanz
n−1, |z| < R.

Proof. We know (zn)′ = nzn−1. Consider
∞∑

n=1

nanz
n−1. Then

lim sup
n→∞

|nan|
1
n = lim sup

n→∞
n

1
n︸︷︷︸

→1:n
1
n =e

1
n

log n

|an|
1
n = lim sup

n→∞
|an|

1
n ,

i.e. the two series on two sides of statement share the same radius of convergence R. We can therefore

say
∞∑

n=0

anz
n converges pointwise and

∞∑
n=1

nanz
n−1 converges uniformly on BR(0) : the condition for

interchange of limit and derivative, i.e. termwise differentiability (Theorem 3.2.10):( ∞∑
n=0

anz
n

)′

=

∞∑
n=0

(anz
n)

′
=

∞∑
n=1

nanz
n−1.

□

Remark. This proof requires formulation of complex integral which will be introduced later. If you are
not convinced without this definition, see typewritten notes for a “manual” proof.

Corollary 4.4.8. Let
∞∑

n=0

anz
n have the radius of convergence R > 0. Then f : z 7→

∞∑
n=0

anz
n is ∞

complex differentiable on BR(0) and

f (k)(0) = akk!
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Proof. Iteration of above theorem gives

f ′(z) =

∞∑
n=1

nanz
n−1

f ′′(z) =

∞∑
n=2

n(n− 1)anz
n−2

...

f (k)(z) =

∞∑
n=k

n(n− 1) · · · (n− k + 1) anz
n−k︸ ︷︷ ︸

ak

so
f (k)(0) = k(k − 1) · · · 1 · ak = k!ak.

□

4.4.1. Exponential and circular functions.

Definition 4.4.9. For z ∈ C,

ez :=

∞∑
n=0

zn

n!

cos z :=

∞∑
n=0

(−1)n

(2n)!
z2n

sin z :=

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

cosh z :=

∞∑
n=0

z2n

(2n)!

sinh z :=

∞∑
n=0

z2n+1

(2n+ 1)!

Using ratio test we can see R = ∞ for all of above.

Example 4.4.10.

(ez)
′
=

( ∞∑
n=0

zn

n!

)′

=

∞∑
n=0

(zn)′

n!
=

∞∑
n=1

1

(n− 1)!
zn−1 =

∞∑
n=0

zn

n!
= ez.

Proposition 4.4.11.

cos z =
eiz + e−iz

2

sin z =
eiz − e−iz

2i

cosh z =
ez + e−z

2

sinh z =
ez − e−z

2

Proof.
eiz + e−iz

2
=

1

2

∞∑
n=0

1

n!
((iz)n + (−iz)n) =

∞∑
n=0

1

n!

1 + (−1)n

2︸ ︷︷ ︸
0 when n is odd

(iz)n

=
n=2k

∞∑
k=0

1

(2k)!
(iz)2k =

∞∑
k=0

(−1)k

(2k)!
z2k =: cos z

Proofs of remaining statements are left as an exercise. □

Note for x ∈ R, plots of cosx and coshx look very different:
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−π −π
2

π
2

π

−1

1

cosx

−4 −2 2 4

1

coshx

But in the complex plane, cosh is just a composition of cos and its
π

2
rotation, i.e. cosh z = cos iz and

similarly sinh z = sin iz.

Theorem 4.4.12 (Properties of exponential).

(1) ez+w = ezew ∀z, w ∈ C
(2) ez ̸= 0 ∀z ∈ C
(3) ez = 1 ⇔ z = 2kπi, k ∈ Z
(4) ez = −1 ⇔ z = (2k + 1)πi, k ∈ Z

4.5. Argument and Log. We can write z as |z|eiθ. Let z1z2 ̸= 0, then

z1 = z2 ⇔ |z1|eiθ1 = |z2|eiθ2 ⇔

{
|z1| = |z2|

θ1 − θ2 = 2πk, k ∈ Z

So we define the function arg : C\{0} → {subsets of R} by

z 7→ {θ + 2πk, k ∈ Z}.
Note that arg is a multivalued or set-valued function.

Proposition 4.5.1 (Properties of argument). (1) arg(αz) = arg(z) for α > 0
(2) arg(αz) = π + arg(z) for α < 0

• To see this note that α = (−α)(−1) = |α|eiπ
(3) arg

(
1
z

)
= − arg(z)

(4) arg(z) = − arg(z)
(5) arg(zw) = arg(z) + arg(w)

We can see there’s much unnecessary ambiguity of arg, so we define a single valued function related to
it, called principal argument:

Arg(z) = (−π, π] ∩ arg(z)

Note that Arg is not analytic in C\{0}:

lim
ε↓0

Arg
(
ei(π−ε)

)
= π

lim
ε↓0

Arg
(
ei(π+ε)

)
= −π,

but
lim
ε↓0

∣∣∣ei(π−ε) − ei(π+ε)
∣∣∣ = 0.

ℜ

ℑ

π − ε

π + ε
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Now we would like to find w : ew = z. We know

ew = |z|eiθ = elog |z|+i arg(z),

so define log : C\{0} → {subsets of C} by z 7→ log z = Log |z|+ i arg(z) where Log is logarithm of R+.
Similar to arg, we have a single value version z 7→ Log(z) = Log |z|+ iArg(z).

Unfortunately we have a clash of notations of real logarithm and complex principal logarithm.

Proposition 4.5.2 (Properties of logarithm). (1) log(zw) = log z + logw
(2) log z−1 = log z

Similarly Log is not analytic in C\{0}: for any x < 0,

lim
ε↓0

Log(x+ iε) = log |x|+ iπ

lim
ε↓0

Log(x− iε) = log |x| − iπ,

so it’s not continuous at {x < 0}.

ℜ

ℑ

•
x+ iε

•
x− iε

But we see that Log is analytic on C\{x ≤ 0} by checking Cauchy–Riemann equations. (This is called
a “branch cut”.) Now we can apply calculus:

eLog z = z(
eLog z

)′
= z′ = 1 = (Log z)′eLog z = (Log z)′z

so (Log z)′ =
1

z
.

If α ∈ C, z ̸= 0, we define

zα := eα log z = eα log |z|+αi arg(z)

which is set-valued. If α ∈ Z then z 7→ zα is single-valued:

eiα arg(z) = e

i(αθ+2π kα︸︷︷︸
∈Z

, k∈Z)

= eiαθ,

and if α = ±p
q , p, q ∈ N, then zα consists of at most q elements:{

eαLog |z|e2πiαk : 0 ≤ k ≤ q − 1
}
,

and in particular we have the q-th roots of unity

1
1
q =

{
e2πi

k
q : 0 ≤ k ≤ q − 1

}
.

ℜ

ℑ•
•

•

•
•

•

•

•
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4.6. Complex integration, contour integrals.

Definition 4.6.1. f : [a, b] → C is integrable if ℜf,ℑf : [a, b] → R are integrable. Then∫ b

a

f :=

∫ b

a

ℜf + i

∫ b

a

ℑf ∈ C.

Proposition 4.6.2 (Properties of complex integration). (1) Linearity: α, β ∈ C, f, g : [a, b] → C
integrable, then ∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g

(2) Interchangeability of conjugation and integration:∫ b

a

f =

∫ b

a

f

(3) Triangle inequality: ∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ ≤
∫ b

a

|f |

Check. (1) Let α = µ+ iν, f = u+ iv, then

αf = (µu− νv) + i(µv + νu).

By definition and linearity of Riemann integral,∫ b

a

αf = µ

∫ b

a

u− ν

∫ b

a

v + i

(
µ

∫ b

a

v + ν

∫ b

a

u

)

= (µ+ iν)

∫ b

a

u+ i(µ+ iν)

∫ b

a

v

= (µ+ iν)

∫ b

a

(u+ iv)

= α

∫ b

a

f.

(2) Left as an exercise.
(3) We know ∫ b

a

f =

∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ eiθ for some θ ∈ R.

So ∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ = e−iθ

∫ b

a

f =

∫ b

a

(
e−iθf

)
.

Let e−iθf = u+ iv, then ∫ b

a

(
e−iθf

)
=

∫ b

a

u+ i

∫ b

a

v

but this is real, so
∫ b

a
v = 0. We can therefore use the triangle inequality for real and conclude that∫ b

a

u ≤
∫ b

a

|u| ≤
∫ b

a

√
u2 + v2

∫ b

a

∣∣e−iθf
∣∣ = ∫ b

a

|f |.

□

A more important aim is to define integral for f : C → C. Such functions can be viewed as vector fields

on R2, suggesting we can borrow the idea of line integral:
∫
Γ

f dz where Γ is an oriented curve in C. We

need some terminology.

Notation. (1) γ : [a, b] → C denotes a C1 map called a parameterised curve.
(2) Γ = γ([a, b]) ⊂ C, this is an unparameterised curve, the equivalence class of maps from R to C:

γ1 ∼ γ2 if Im γ1 = Im γ2 .
(3) If Γ is oriented, then −Γ coincides with Γ as a subset of C, but has the opposite orientation
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(4) Shorthand: ∫
Γ

f(z) dz =

∫
Γ

f dz =

∫
Γ

f.

We use
∫
γ
f to emphasise parameterisation.

Remark. For orientation to make sense, it is sufficient for γ to be regular if γ′ ̸= 0 (you have tangent
vector everywhere)

Definition 4.6.3. Let Γ ⊂ C be oriented and γ : [a, b] → C its parameterisation. Define∫
Γ

f :=

∫ b

a

f(γ(t))

“dr”︷ ︸︸ ︷
γ′(t) dt .

If Γ is piecewise C1, i.e. Γ =
⋃
Γi where Γi’s are almost disjoint, then∫

Γ

f :=

n∑
k=1

∫
Γk

f.

Standard properties of Riemann integrals like linearity and additivity hold.

Lemma 4.6.4 (Representation invariance). (1)∫
−γ

f = −
∫
γ

f

(If γ : [a, b] → C, then −γ = γ(a+ b− ·) (shift by a+ b then change sign)
(2) If γ : [a, b] → C and ϕ : [ã, b̃] → [a, b] is bijective, increasing and C1, then∫

γ

=

∫
γ◦ϕ

f

(ϕ is an orient-preserving reparameterisation)

Remark. (1) By analogy with multivariable calculus we can define∫
Γ

|f ||dz| :=
∫ b

a

|f(γ(t))| · |γ′(t)| dt

Notice that if f = 1, and write γ(t) = x(t) + iy(t), then the above integral is∫ b

a

√
x′2(t) + y′2(t) dt

so it’s just the Euclidean length of Γ. Hence∣∣∣∣∫
Γ

f dz

∣∣∣∣ =
∣∣∣∣∣
∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(γ(t))| · |γ′(t)| dt

≤ sup
z∈Γ

|f(z)|
∫ b

a

|γ′(t)| dt = sup
Γ

|f | · length of Γ

(2) We can define ∫
Γ

f dz :=

∫ b

a

f(γ(t)) · γ′(t) dt,

but we will be mostly interested in ∫
Γ

f dz

where f is analytic in an open subset Ω ⊂ C and Γ ∈ Ω is an oriented curve. If we start considering
all the versions of integrals we have listed here, we would end up reproducing theory of line
integrals over vectors fields in R2. So by looking at the integral above, we specify on a very special
class of vector fields, and this speciality comes from analyticity.

Example 4.6.5. (1) Consider ∫
Γ=∂BR(0)

zn dz, n ∈ Z

where ∂BR(0) is circle of radiusR, centred at origin and oriented counterclockwise. We parameterise
it by

γ(t) = Reit, t ∈ [0, 2π].
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Then by definition,∫
Γ

zn dz =

∫ 2π

0

(
Reit

)n · iReit dt = iRn+1

∫ 2π

0

ei(n+1) dt

= iRn+1

∫ 2π

0

(cos(n+ 1)t+ i sin(n+ 1)t) dt︸ ︷︷ ︸
0 unless n+1=0

= iRn+1δn,−1

∫ 2π

0

1 dt

= 2πiδn,−1,

which doesn’t depend on R!
(2) From the above we can consider the exponential integrated on the same Γ; by its uniform

convergence we can swap integral and infinite sum:∫
Γ

ez dz =

∫
Γ

∞∑
n=0

zn

n!
dz =

∞∑
n=0

1

n!

∫
Γ

zn dz =

∞∑
n=0

1

n!
2πiδn,−1 = 0.

(3) Consider ∫
Γ

ez

zk+1
dz, k ∈ N0.

We rewrite ∫
Γ

∞∑
n=0

1

n!
zn−1−k dz =

∞∑
n=0

1

n!

∫
Γ

zn−1−k dz

=

∞∑
n=0

1

n!
2πiδn−1−k,−1

= 2πi

∞∑
n=0

1

n!
δn,k = 2πi

1

k!
.

Note that 1
k! is the k-th term of Taylor of exponential at 0. We are integrating by differentiating. Also,

take k = 0, we are integrating ex

x whose antiderivative (called exponential integral, a special function) is
not expressible. We now can do something beyond Fundamental theorem of calculus.

Example 4.6.6.

Ik =

∫
∂BR(1+i)

zk dz, k ∈ N0, R > 0.

We start with parameterising the circle by

γ = (1 + i) +Reit, t ∈ [0, 2π],

so by definition

Ik =

∫ 2π

0

(
1 + i+Reit

)k︸ ︷︷ ︸
z(γ)

iReit︸ ︷︷ ︸
γ′(t)

dt

=

∫
∂BR(0)

(1 + i+ w)k dw change of variables

=

k∑
n=0

(
k

n

)
(1 + i)k−n

∫
∂BR(0)

wn dw = 0. by binomial and previous example

Theorem 4.6.7 (Complex FTC, or line integrals of conservative fields). Let F : Ω → C be analytic such
that F ′ = f is continuous and γ : [a, b] → Ω be an oriented C1 curve in Ω. Then∫

γ

f dz = F (γ(b))− F (γ(a)),

i.e. integral only depends on end points.
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Proof. ∫
γ

f dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

F ′(γ(t))γ′(t) dt

=

∫ b

a

d

dt
F (γ(t)) dt chain rule

= F (γ(b))− F (γ(a)). usual FTC
□

Remark. Ω doesn’t have to be simply connected.

4.6.1. Link with multivariable calculus. Let r : [a, b] → R2 be a curve in R2, v : R2 → R2 be a vector field.
If C = Im r is closed, then ∫

C

v · dr =
∫ b

a

v(r(t)) · r′(t) dt

is called the circulation of v around C.
Now let Ω ⊂ R2 be a regular domain (open, bounded, with piecewise C1 boundary) which is positively

oriented: meaning N(t) = r′(t)× ez is outward normal. (We are thinking 2-d as a subspace of 3-d, ez is
the unit vector pointing from the board toward the viewers).

The most important particular case, from which we will build everything, is Ω = ∂γ where γ is simple
closed curve oriented counterclockwise.

Explicitly, if r′(t) = (x′(t), y′(t), 0) and ez = (0, 0, 1), then

(∗) N(t) = r′(t)× ez = (y′(t),−x′(t), 0).

If Ω is positively oriented in this sense, then flux of u through ∂Ω is∫
∂Ω

u ·N dt =
∑∫ bi

ai

u(γ(t))N(t) dt

where the sum is over connect components of ∂Ω.
Let Ω ⊂ R2 be regular, positively oriented. Then∫

Ω

∇× u dx dy︸ ︷︷ ︸
area element

=

∫
∂Ω

u · dr

(Green’s theorem) and similarly ∫
Ω

∇ · u dx dy =

∫
∂Ω

u ·N dt

(Divergence/Gauss’s theorem).

Remark. f := u+ iv : Ω → C. Let γ : [a, b] → Ω be a curve. Consider∫
γ

f dz =

∫ b

a

(u+ iv)(γ′1 + iγ′2) =

∫ b

a

(uγ′1 − vγ′2) + i

∫ b

a

(vγ′1 + uγ′2)

=

∫ b

a

(u,−v) · (γ′1, γ′2)︸ ︷︷ ︸
γ′(t)

+i

∫ b

a

(u,−v) · (γ′2,−γ′1)︸ ︷︷ ︸
N(t)

by (∗) above

= circulation of f + i flux of f

where f is a vector field built out of f which is written by (u,−v) : R2 → R2.

Theorem 4.6.8 (Cauchy’s). Ω ⊂ C is open, simply connected. f : Ω → C is analytic, γ ⊂ Ω is a C1

closed, simple curve (i.e. a contour). Then ∫
γ

f dz = 0.

Proof. Let D ⊂ C be the domain bounded by γ (the interior of γ). D is then regular and ∂D = γ. D
indeed exists by Jordan curve theorem. We claim D ⊂ Ω. Indeed, suppose D ̸⊂ Ω. Then ∃z0 ∈ D :
z0 ̸∈ Ω. Since Ω is simply connected, there is a family of curves (γt)t∈[0,1], a continuous deformation of
γ : γ0 = γ, γ1 = z1 ∈ Ω and γt ⊂ Ω ∀t ∈ [0, 1]. Since z0 ̸= z1, ∃ε > 0 : z0 is in the exterior of γ1−ε. By
Intermediate value theorem, ∃τ ∈ [0, 1] : z0 ∈ γτ ⊂ Ω, a contradiction.
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•
z1

•
z0

γ1−ε

So f is analytic in D ∪ γ, and

∫
γ

f dz = circγ(f) + i fluxγ(f)

=

∫
D

∇× f + i

∫
D

∇ · f Green’s on first term, Gauss’s on second

=

∫
D

(
−∂v
∂x

− ∂u

∂y

)
+ i

∫
D

(
∂u

∂x
− ∂v

∂y

)
= 0 + i · 0 Cauchy–Riemann
= 0.

□

Remark. (1) Analytic functions give rise to very special vector fields f with both curl f and div f
equal to zero.

(2) Consider
∫
∂BR(0)

z−1 dz. z−1 is analytic in C\BR(0) ∀R > 0, which is not simply connected, in
other words, we cannot deform a circle to a point since the hole won’t let us. And indeed we know
the integral is 2πi ̸= 0.

It turns out that Cauchy’s theorem is a very powerful tool for computing contour integrals.

Theorem 4.6.9 (Contour deformation). Ω ⊂ C positively oriented, regular such that ∂Ω = γ1 ∪ γ2 and
γ1 ∩ γ2 = ∅ and γi’s are contours. Let f : Ω ∪ γ1 ∪ γ2 be analytic. Then

∫
γ1

f +

∫
γ2

f = 0.

Equivalently, ∫
γ1

f =

∫
−γ2

f.

(Deforming the contour within in the region of analyticity does not change the integral of an analytic
function.)

Picturesque proof. Parameterise γi from pi and η from p2 to p1. Note that Ω\η is simply connected. So
by Cauchy’s theorem, ∫

∂(Ω\η)
f =

∫
γ2

f +

∫
η

f +

∫
γ1

f +

∫
−η

f

=

∫
γ1

f +

∫
γ2

f

= 0.
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Ω

γ1

γ2

•
p1

•
p2

η −η

□

Remark. (1) Terminology: given contour γ, I(γ) denotes interior of γ which is open, bounded subset
of C and ∂I(γ) = γ, and I(γ) = I(γ) ∪ γ. O(γ) denotes out outside of γ, which is equal to I(γ)

C
.

(2) We established before that ∫
∂BR(0)

zn dz = 2πiδn,−1.

Now similarly, ∫
∂BR(a)

(z − a)n dz = 2πiδn,−1.

Fix z ∈ C,

1

2πi

∫
γ

1

z − w
dw =

{
0 z ∈ O(γ)

1 z ∈ I(γ)

since if z ∈ O(γ) it’s just Cauchy’s theorem, but if z ∈ I(γ) we can surround z by a ball and
deform γ to the ball continuously, and by previous theorem the two integrals are the same, so it’s
2πi
2πi = 1.

Theorem 4.6.10. Let γ ⊂ C be a contour (oriented counterclockwise). Suppose f is analytic in I(γ).
Then ∀z ∈ I(γ),

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw,

i.e. given analytic function and its values on a contour, we can give value of the function anywhere inside
the contour.

Proof. Note that
f(w)

w − z
is analytic in I(γ)\BR(z) where R > 0 : BR(z) ⊂ I(γ), so

1

2πi

∫
γ

f(w)

w − z
dw =

1

2πi

∫
∂BR(z)

f(w)

w − z
dw

=
1

2πi

∫
∂BR(z)

f(z)

w − z
dw +

1

2πi

∫
∂BR(z)

f(w)− f(z)

w − z
dw︸ ︷︷ ︸

error term

= f(z) +
1

2πi

∫
∂BR(z)

f ′(z) + gz(w) dw

where |gz(w)| → 0 as |w − z| → 0, and since R is arbitrarily small,∣∣∣∣∣ 1

2πi

∫
∂BR(z)

f ′(z) + gz(w) dw

∣∣∣∣∣ = 1

2π

∫
∂BR(z)

|f ′(z) + gz(w)||dw|

≤ 1

2π

(
|f ′(z)|+ sup

z∈BR(z)

|gz(w)|

)
2πR

= 0

so the error term vanishes and we have what’s desired.
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z•

∂BR(z)

□

We can generalise this statement.

Theorem 4.6.11. Let γ ⊂ C be a contour (oriented counterclockwise). Suppose f is analytic in I(γ).
Then ∀z ∈ I(γ), ∀n ∈ N0,

f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw,

i.e. the derivative of any order exists at any point where f is analytic and we can differentiate by
integrating.

Shortcut proof. f is analytic at every w ∈ γ. Therefore ∃ε(w) : f is analytic in Bε(w)(w). Consider
{Bε(w)(w)}w∈γ , which is an open cover of γ, i.e. union of elements in this set is open and contains γ.
Note that γ is compact (closed, bounded), so by a theorem which will be proved in MA260, ∃ a finite
subcover {Bε(wi)(wi)}Ni=1 of γ. Let γ̃ be a contour such that

γ̃ ⊂

(
N⋃
i=1

Bε(wi)(wi)

)
∩O(γ).

The following picture makes clear. The thick curve is γ, where f is analytic, so we can exploit this fact
and find an outside curve which is still in the ball-cover, and f is analytic in γ̃ and I(γ̃).

Then by previous theorem

f(z) =
1

2πi

∫
γ̃

f(w)

w − z
dw,

so
f(z + h)− f(z)

h
=

1

2hπi

∫
γ̃

f(w)

w − z − h
− f(w)

w − z
dw

=
1

2hπi

∫
γ̃

f(w)h

(w − z − h)(w − z)
dw

=
1

2πi

∫
γ̃

f(w)
1

(w − z)2
dw +

1

2πi
Eh,

where

Eh =

∫
γ̃

f(w)

(
1

(w − z − h)(w − z)
− 1

(w − z)2

)
dw

=

∫
γ̃

f(w)
h

(w − z)2(w − z − h)
dw

=
for any |h|<r

h

∫
∂B2R(z)

f(w)

(w − z)2(w − z − h)
dw

where the integrand is uniformly bounded as |w − z − h| ≥ r.
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2r

•z
•z + h

|h|

γ̃

•w

Therefore as h→ 0, Eh vanishes. Hence

f ′(z) =
1

2πi

∫
γ̃

f(w)
1

(w − z)2
dw.

Now, pick any z ∈ I(γ̃),

f ′(z + h)− f ′(z)

h
=

1

2hπi

∫
γ̃

f(w)

(
1

(w − z − h)2
− 1

(w − z)2

)
dw

=
1

2πi

∫
γ̃

f(w)
2(w − z)− h

(w − z − h)2(w − z)2
dw

=
2

2πi

∫
γ̃

f(w)

(w − z)3
dw + Eh

where we separate the integral to the target and error term Eh by putting h = 0. Then Eh → 0 as h→ 0
similarly, so we have

f ′′(z) =
2

2πi

∫
γ̃

f(w)

(w − z)3
dw,

as desired. We proceed by induction to get the general result: f ′′(z) exists ∀z ∈ I(γ̃) ⇒ f ′ is analytic in
I(γ̃) ⇒ f ′ is analytic in I(γ). So we’ve proven that

f analytic in I(γ) ⇒ f ′ analytic in I(γ).

Therefore f (n) is analytic in I(γ). So by Theorem 4.6.10,

f (n)(z) =
1

2πi

∫
γ

f (n)(w)

w − z
dw

=
1

2πi

(
−
∫
γ

f (n−1)(w)
∂

∂w

1

w − z
dw

)
integration by parts

=
1

2πi

∫
γ

f (n−1)(w)
1

(w − z)2
dw

=
2

2πi

∫
γ

f (n−2)(w)
1

(w − z)3
dw integration by parts again

= · · · again and again

=
n!

2πi

∫
γ

f(w)
1

(w − z)n+1
dw,

as desired. □

4.6.2. Consequences of Cauchy’s theorem.

Theorem 4.6.12 (Taylor’s theorem). Let f be analytic in BR(a) ⊂ C, R > 0, a ∈ C. Then ∃!(cn)n≥0 ⊂
C : ∀z ∈ BR(a),

f(z) =

∞∑
n=0

cn(z − a)n,

moreover,

cn =
1

2πi

∫
γ

f(w)

(w − z)n+1
dw =

f (n)(a)

n!

where γ ⊂ BR(a) is any contour such that a ∈ I(γ).
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(Informally, if f is analytic at a then its Taylor series has a positive radius of convergence and is equal
to f within the corresponding ball.)

Proof. We know ∀z ∈ BR(a), ∃γ ∈ (|z − a|, R) : Br(a) ⊂ BR(a).

•
a

•
z

r
R

Since f is analytic in Br(a), by Theorem 4.6.10 we have

f(z) =
1

2πi

∫
∂Br(a)

f(w)

w − z
dw

=
1

2πi

∫
∂Br(a)

f(w)

w − a

w − a

w − z
dw

=
1

2πi

∫
∂Br(a)

f(w)

w − a

1

1− z−a
w−a

dw.

Note that ∣∣∣∣ z − a

w − a

∣∣∣∣ = |z − a|
r

< 1.

So

1

1− z−a
w−a

=

∞∑
n=0

(
z − a

w − a

)n

which converges uniformly with respect to w by the M -test. This means we can interchange integration
and summation and we have

f(z) =
1

2πi

∫
∂Br(a)

f(w)

w − a

∞∑
n=0

(
z − a

w − a

)n

dw.

=
1

2πi

∞∑
n=0

∫
∂Br(a)

f(w)

(w − a)(w − a)n
dw (z − a)n.

By Theorem 4.6.11 this is what’s desired. ∂Br(a) can be replaced with any γ encompassing a by Contour
deformation theorem (γ ⊂ BR(a)).

For uniqueness, suppose

(∗) f(z) =

∞∑
n=0

bn(z − a)n ∀z ∈ Bρ(a) for some ρ > 0

then the right hand side of (∗) converges uniformly in Bρ′(a) ∀ρ′ < ρ. So we can differentiate term by
term for any z ∈ Bρ′(a). By Theorem 3.3.4, bn = 1

n!f
(n)(a) = cn. □

Example 4.6.13. Let f : z 7→ (1 + z)a in B1(0) and a ∈ C fixed. We know f(z) = eaLog(1+z) is analytic
in B1(0) since z 7→ ez is entire and Log(1 + z) is analytic in C\{x ≤ −1}. So for any ρ < 1,

(1 + z)a =

∞∑
n=0

zn
1

2πi

∫
∂Bρ(0)

(1 + w)a

wn+1
dw.



MA244 ANALYSIS III 47

If we denote 1
2πi

∫
∂Bρ(0)

(1+w)a

wn+1 dw by cn we have

cn =
1

2πi

1

−n

∫ (
w−n

)′
(1 + w)a dw

=
1

2πi

1

n!

∫
w−na(1 + w)a−1 dw integration by parts

=
1

2πi

a

n

∫
∂Bρ(0)

w−n(1 + w)a−1 dw

=
1

2πi

a(a− 1)

n(n− 1)

∫
∂Bρ(0)

w−(n−1)(1 + w)a−2 dw by parts again

=
1

2πi

n−1∏
k=0

a− k

n− k

∫
(1 + w)a−n

w
dw

=

n−1∏
k=0

a− k

n− k

∫
(1 + w)a−n

w

dw

2πi
.

We know w 7→ (1 + w)a+n is analytic at w = 0. So

(1 + w)a−n − 1a−n

w
=
(
(1 + z)a−n

)′ |z=0 + φ(w)

where the error term φ(w) → 0 as w → 0. So

1

2πi

∫
∂Bρ(0)

(1 + w)a−n

w
dw =

1

2πi

∫
1

w
dw︸ ︷︷ ︸

1

+
1

2πi

∫
∂Bρ(0)

(a− n) + φ(w) dw︸ ︷︷ ︸
0

,

therefore

cn =

n−1∏
k=0

a− k

n− k
=

1

n!

n−1∏
k=0

(a− k).

By above theorem,
∑∞

n=0 cnz
n converges for any |z| ≤ ρ where ρ ∈ (0, 1), so radius of convergence R ≥ 1.

Theorem 4.6.14 (Liouville’s theorem). Let f : C → C be entire. If f is bounded, then f is constant.

Proof. f is bounded, meaning ∃M > 0 : |f(z)| ≤M ∀z ∈ C. For any z ∈ C, take R > |z|,

•
0

•
z

∂BR(0)

•
w

then

f(0) =
1

2πi

∫
∂BR(0)

f(w)

w
dw

and

f(z) =
1

2πi

∫
∂BR(0)

f(w)

w − z
dw.
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To see f is constant we need f(z)− f(0) = 0. Indeed:

|f(z)− f(0)| =

∣∣∣∣∣ 1

2πi

∫
∂BR(0)

f(w)

(
1

w − z
− 1

w

)
dw

∣∣∣∣∣
=

|z|
2π

∣∣∣∣∣
∫
∂BR(0)

f(w)
1

(w − z)w
dw

∣∣∣∣∣
≤ |z|

2π

∫
∂BR(0)

|f(w)|
|w||w − z|

|dw|

≤ |z|
2π

∫
∂BR(0)

M

R(R− |z|)
|dw|

=
|z|
2π

M

R(R− |z|)
2πR

=
|z|M
R− |z|

but since f is entire, we can have R as large as we want. Therefore |z|M
R−|z| → 0 and therefore f(z) = f(0). □

Theorem 4.6.15 (Fundamental theorem of algebra). Let p : C → C a non-constant polynomial. Then
∃a ∈ C : p(a) = 0. (Any complex non-constant polynomial has a root.)

Proof by contradiction. Suppose p(z) ̸= 0 ∀z ∈ C. Then f := 1
p is analytic in C, i.e. entire. Indeed,

z 7→ p(z) is entire and x 7→ 1
x is analytic when x ≠ 0. Since p is non-constant, ∃n > 0 : p(z) =

∑n
k=0 ckz

k

where ci ̸= 0. So |p(z)| → ∞ as |z| → ∞. Then ∃R > 0 : |p(z)| ≥ 1 ∀|z| ≥ R. So |f(z)| ≤ 1 ∀|z| ≥ R. But
for |z| ≤ R, f is also bounded, as an analytic hence continuous function on a closed bounded set. We
conclude that f is entire and bounded, so constant, hence p is constant which is a contradiction. □

Theorem 4.6.16. fn : Ω → C, Ω open, n ≥ 1 are all analytic in Ω. If fn ⇒ f : Ω → C, then f is
analytic.

Proof. ∀z ∈ Ω, let r > 0, pick small enough Br(z) ⊂ Ω. Since fn is analytic,

fn(z) =
1

2πi

∫
∂Br(z)

fn(w)

w − z
dw

so

f(z) =
1

2πi
lim
n→∞

∫
∂Br(z)

fn(w)

w − z
dw

=
1

2πi

∫
∂Br(z)

f(w)

w − z
dw + lim

n→∞
En(z)

where En(z) is the error term (difference of the two). We know that by uniform convergence, ∀ε > 0, ∃Nε :
∀n > Nε, sup

Ω
|f − fn| < ε, so

|En(z)| ≤
1

2π

∫
∂Br(z)

|fn(w)− f(w)|
|w − z|

|dw|

<
1

2πr
ε

∫
∂Br(z)

1 |dw|

=
1

2πr
ε2πr = ε,

so limn→∞En(z) = 0, i.e.

f(z) =
1

2πi

∫
∂Br(z)

f(w)

w − z
dw.

Note that fn|∂Br(z) ⇒ f |∂Br(z), so f |∂Br(z) is continuous (on a closed bounded set), hence bounded. From
the proof of Theorem 4.6.11 we know that f ′ exists at every point z ∈ Ω, i.e. f is analytic. □
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4.6.3. Calculation of integrals over R using Cauchy’s theorem.

Definition 4.6.17. Let f be defined on a subset of C. f has a pole of order m ∈ N at a ∈ C if ∃ a
neighbourhood U of a : ∀z ∈ U\{a},

f(z) =
c−m

(z − a)m
+

c−m+1

(z − a)m−1
+ · · ·+ c−1

z − a
+ ϕ(z)

where ϕ is analytic in U , ci ∈ C are constants. Moreover, c−1 is called the residue of f at a, c−1 = Res f(a).
c−m ̸= 0.

Having a pole means the function is not defined at a certain point but on a neighbourhood of it, and
we know that as we approach the point the function blows up at a rate quantified by the pole’s order m
and described as a Laurent polynomial of the distance.

Example 4.6.18. Let f : z 7→ 1
z2+a2 , a > 0. We claim f has first order poles at z = ±ia. Indeed,

f(z) =
1

2ia

(
1

z − ia
− 1

z + ia

)
and we can read off the pole z = ia, corresponding ϕ(z) = − 1

z+ia and Res f = 1
2ia from the above and

the definition. Similar (in fact symmetrically) for the other pole z = −ia.

Theorem 4.6.19 (Residue theorem). Let γ ⊂ Ω be a contour oriented counterclockwise. Suppose f is
analytic in I(γ)\{z1, . . . , zn} where zi’s are finitely many points living inside I(γ). Moreover, suppose f
has poles at z1, . . . , zn. Then ∫

γ

f(z) dz =

n∑
k=1

2πi Res f(zk).

Proof. Choose r > 0 such that f(z) =
∑−m

k=1 ck(z − z1)
k + ϕ1(z) is analytic in ∂Br(z).

γ

•
z1

•
z2

•
zn

. .
.

γ̃

•
z1

∂Br(z1)
•

z2

•
zn

. .
.

η

−η

By contour deformation theorem,

(∗)

∫
γ

f =

∫
γ̃∪η∪∂Br(z1)∪(−γ)

f =

∫
γ̃

f +

∫
η

f +

∫
∂Br(z1)

f +

∫
−η

f

=

∫
γ̃

f +

∫
∂Br(z1)

f

where ∫
∂Br(z1)

f =

−m∑
k=1

ck

∫
∂Br(z1)

(z − z1)
k dz︸ ︷︷ ︸

2πiδk,−1 by Remark before Theorem 4.6.10

+

∫
∂Br(z1)

ϕ1 dz︸ ︷︷ ︸
0 by Cauchy

= 2πic−1 = 2πi Res f(z1).
Now perform induction on γ̃ we have what’s desired. □

Example 4.6.20. Calculate

I =

∫ ∞

∞

1

x2 + a2
dx

which is improper and absolutely convergent. We know this before introduction of complex analysis and
we do this by computing

lim
R→∞

∫ R

−R

1

x2 + a2
dx.
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FTC: Let x = ay, then

I = lim
R→∞

1

a

∫ R
a

−R
a

1

x2 + 1
dx = lim

R→∞

1

a
arctan(x)

∣∣∣∣Ra
−R

a

=
1

a

(π
2
−
(
−π
2

))
=
π

a
.

Contour integrals: Let C(R)
1 be parameterised by c1(x) = x, x ∈ [−R,R] and C(R)

2 by c2(x) = Reit, x ∈
[0, π], and γR := C1 ∪ C2.

•
−R

•
R

Then
I = lim

R→∞

∫
C

(R)
1

1

z2 + a2
dz

= lim
R→∞

∫
C

(R)
1

1

z2 + a2
dz +

∫
C

(R)
2

1

z2 + a2
dz︸ ︷︷ ︸

↓0

= lim
R→∞

∫
γ

1

z2 + a2
dz

= lim
R→∞

2πi
1

2ia
=
π

a
.

(Sanity check: as R→ ∞,∣∣∣∣∣
∫
C

(R)
2

1

z2 + a2
dz

∣∣∣∣∣ ≤
∫
C

(R)
2

1

|z2 + a2|︸ ︷︷ ︸
≈R2

|dz|︸︷︷︸
R dt

≤ 2

∫
1

R2
R dt→ 0.)

Lemma 4.6.21. f, g : U → C analytic, U open. Let a ∈ U : g(a) = 0, g′(a) ̸= 0 and g(z) ̸= 0 ∀z ̸= a.
Then f

g : U\{a} → C has a first order pole. Moreover, Res f
g (a) =

f(a)
g′(a) .

Proof. Analyticity means ∃R1 > 0 : ∀z ∈ BR1
(a) ⊂ U,

g(z) =

∞∑
n=1

gn(z − a)n =
g1=g′(a)̸=0

g1(z − a)

∞∑
m=1

gm
g1

(z − a)m︸ ︷︷ ︸
h(z)

,

and f, h are analytic in BR1
(a). Also h(a) = 1, so ∃R2 ∈ (0, R1] : h ≠ 0 in BR2

(a), so that f
h is analytic in

BR2
(a). Hence ∀z ∈ BR2

(a)\{a},
f(z)

g(z)
=

f(z)

g1(z − a)h(z)

=
1

g1(z − a)

(
f(a)

h(a)
+ (z − a)ϕ(z)

)
=
f(a)

g′(a)

(
1

z − a
+ ϕ(z)

)
,

which gives what’s desired. □

Example 4.6.22. We have

I(k) =

∫
R

eikx

x2 + a2
dx, a > 0, k ∈ R.

Note that ∣∣∣∣ eikx

x2 + a2

∣∣∣∣ ≤ 1

x2
,



MA244 ANALYSIS III 51

so it converges absolutely. Hence, using the same C(R)
i and γR notation,

I(k) = lim
R→∞

∫ R

−R

eikx

x2 + a2
dx

= lim
R→∞

∫
C

(R)
1

eikz

z2 + a2
dz

Now we know that 1
z2+a2 goes to 0 fast enough to ensure convergence, but what about the exponential on

the numerator? Note that as z → ∞ along the imaginary axis, eikz → 0 but as it → −∞, eikz → ∞, i.e.
we only have a chance of convergence if we enclose the curve in the upper half of plane (like we did in the
first such example). So

= lim
R→∞

∫
C

(R)
1

eikz

z2 + a2
dz +

∫
C

(R)
2

eikz

z2 + a2
dz

= lim
R→∞

∫
γR

eikz

z2 + a2
dz

Let f(z) = eikz, g(z) = z2 + a2, then g(ia) = 0, g(z) ̸= 0 ∀z ≠ ia, g′(z) = 2z ≠ 0. So using the lemma
we know that eikz

z2+a2 has a first order pole at z = ia and Res = f(ia)
g′(ia) = e−ka

2ia . By Residue theorem we
then have

= 2πi
e−ka

2ia
=
πe−ka

a
, k ≥ 0.

For k < 0, we use lower half of plane and it’s symmetric, i.e. k 7→ I(k) is even (can see this by change of
variables).

We conclude that

I(k) =
πe−|k|a

a
, ∀k ∈ R.

(Sanity check: as R→ ∞,∣∣∣∣∣
∫
C

(R)
2

eikz

z2 + a2
dz

∣∣∣∣∣ ≤
∫ π

0

∣∣∣eikReit
∣∣∣

|z2 + a2|
R dt

≤
R sufficiently large

2R

R2

∫ π

0

∣∣∣eikR(cos t+i sin t)
∣∣∣ dt

=
2

R

∫ π

0

∣∣eikR cos t
∣∣ ∣∣e−kR sin t

∣∣ dt

=
2

R

∫ π

0

∣∣e−kR sin t
∣∣ dt ≤ 2

R
→ 0.)

See notes for a (similar) proof of

I(k) =

∫
R

eikx

coshx
dx =

π

cosh kπ
2

, k ∈ R.
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