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1. RIEMANN INTEGRATION

Aims:
(1) Rigourise f: f(z) dz
(2) learn how to to compute integrals

[ 1 dx::g_;:f(;) L

Prehistoric way:

" 0 0 &~ o 9 antl-1
2_ 9 O j _ 2.9
Z] Yoz  ox Zm R A — .
7=0 3=0 1 =
n—1
_1 S = 1nam=—3)n-1) 1
T ) T 3 3
§=0
Remark. (1) Does the answer depend on where do we compute f?

(2) FTC is here less important than a consistent definition
1.1. Definition of Riemann integrals.
Definition 1.1.1. 2 intervals I7, I C R are almost disjoint if I; N I, is () or one single point.

Definition 1.1.2. A partition P of a closed interval I C R is a set {I1,...,I,} of closed almost disjoint
intervals such that (J!_, I; = I.

Let f : [a,b] — R.
Notation. M =sup f, m =inf f, M} =supf, mi = i}lff
Iy k
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2 OLEG ZABORONSKI

Definition 1.1.3. The upper Riemann sum of f with respect to P is
U(f,P) = My|Iy|.
k=1

Lower Riemann sum is

L(f,P) =Y my|Ll.
k=1

Clearly
m<my <M, <M
= m|l| < my || < My|l| < M|
= m(b— a) < L(f, P) < U(f. P) < M(b—a).
Notation. Bla,b] denotes the set of all bounded functions on [a, b].

Let P be the set of all partition P’s, then the sets {L(f, P)}pep,{U(f, P)}pcp are bounded.
Definition 1.1.4. Upper Riemann integral of f is defined

U(f)= inf U(f, P least timat
(f) jnf (f,P), [least overestimator]
and lower Riemann integral
L(f) = sup L(f, P), [greatest underestimator].
PeP

Definition 1.1.5. f € Bla,b] is Riemann integrable if U(f) = L(f), in which case we write

b
/ﬂm:uﬁzmn

Remark. (1) By default interval is bounded
(2) By definition unbounded function are not Riemann integrable

(3) We consider integrals over unbounded intervals and /or unbounded functions as “improper”
(4) Shorthand:

o [Vf(x)de— [Of

e integrable = Riemann integrable

Example 1.1.6. (1) For
1 >0
)= {

0 z=0"
we have U(f, P) =1 and L(f, P) = 1—|I] since the first interval always contain 0. Clearly we then
have U(f) = 1. We also have L(f) = 1 since 1 is an upper bound and Ve > 0,3P : 1 —¢ < L(f, P).

Therefore fol f=1
(2) Let
1 2z€Q
f@={y tag
then any I C R contains both rationals and irrationals [completeness of R| = VP, L(f, P) =
0,U(f,P)=1= L(f) =0,U(f) =1, therefore f not integrable.

By definition integrable functions are boring. Next step: build classes of integrable function.

Definition 1.1.7. The partition Q@ = {I3,...,I,} of [a,b] is a refinement of P = {J1,..., i} if Yk, Jj is
union of one or more Ij;’s (or the set of end points of P is a subset of that of Q).

Theorem 1.1.8. f € Bla,b], P,Q € P. If Q is a refinement of P, then
L(f,P)<L(f,Q) <U(f,Q) <U(f, P).
Proof. Let P={I1,Is,.... I,},Q ={J1,Jo, ..., Ji},mp = i}’lfﬁ My, =supf,m; = i?fﬁﬁjz supf. Since
k Iy, J j

J
Br
vk, 3ok < B L= I,

Jj=ak



MA244 ANALYSIS III 3

we have my, <m;, M, > E and

n n B
P):ka|lk|:ka. > 1]
= = j*ak
—ZkaiJl<ZZmJ|J|—ZmJ|J|— Q-
k=1 j=oy k=1j=ay
Similarly we can prove U(f, Q) < I(f, P). a

Theorem 1.1.9. f € Bla,b]. If P,Q are any two partitions, then L(f, P) < U(f, Q).
Proof. Let R be a refinement of P,Q [R = P UQ]. From Theorem 1.1.8,
L(f,P) < L(f,R) <U(f,R) <U(f,Q).

Corollary 1.1.10. If f € Ba,b], then L(f) < U(f).

Proof. We have VP,Q € P, L(f,P) < U(f,Q), in other words L(f, P) is a lower bound for {U(f,Q)}.
Then L(f) < L(f, P) < juf U(1,Q) = U(]) O

Theorem 1.1.11. f € Bla,b] is integrable if and only if Ve > 0,3P : U(f,P) — L(f,P) < ¢
Proof. = Let Py, P, € P satisfy
U(f, P) <U(f) +

L(f,P2) > L(f) -
and P a refinement of Py, P,. Then

U(f,P) <U(f, P1) <U(f) +
L(f,P) = L(f, P2) > L(f

DM m

= L(f) = 5 < LUF,P) SU(LP) < U(f) + 5

) —
Since f is integrable, L(f) = U(f), so U(f,P) — L(f,P) <e
«<: VP € P we have U(f) < U(f,P) and L(f) > L(f, P), so

Ve > 0,3P: 0 < U(f) — L(f) < U(f, P) — L(f, P) < ¢ = U(f) = L(f).

O
Theorem 1.1.12. f € Ba,b] is integrable iff 3(P,),>1 C P such that
Handwavy proof. Set € = % and use Theorem 1.1.11. O

Definition 1.1.13. f: Q — R is uniformly continuous if
Ve >0,30(e) : (z,y € Q| —y[ <é(e)) = [f(z) — f(y)| <e.

Theorem 1.1.14 (Continuity and uniform continuity coincide on closed bounded intervals). Let f € C[a, b],
then f is uniformly continuous.

Proof. (by contradiction) Suppose f is not uniformly continuous, then 3¢ > 0 : V6 > 0,3z, y € [a, b] such
that |z —y| < 6 = [f(z) — f(y)| > e. Take 6, = L and (), (yn) C [a,b] such that |z, —y,| < L — 0.
Since [a, b] is bounded, by Bolzano-Weierstrass we can find subsequences (z, ), (yn, ) that converge to

x =1y € [a,b] as [a,b] is closed and limy 00 Yn, = UMg—o0 Tny + (Yny — Ty, ). But |f(zn,) — f(yn, )| > € Vk
~—_——

0
= limg 00 | f(@n,,) — f(yn, )| = € and by continuity of composition |f(z) — f(z)| > e, a contradiction. O

Remark. Generally continuity % uniform continuity, i.e. latter is stronger, e.g. « +— e” on R (closed but
unbounded) and x +— £ on (0,1) (bounded but not closed) are continuous but not uniformly. [We also
have Lipschitz continuity which is even stronger (remember the double cone?).] Anyway we are now ready
to prove the following important theorem.

Theorem 1.1.15 (k). Let f : [a,b] — R be continuous. Then f is integrable.
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Proof. Tt follows that f is uniformly continuous, i.e.
€
Ve > 0735 : (‘T,y € [a7b]]1|$_y| < 6) = |f($) _f(y)l < m
Let P = {I1,...,I,} be a partition of [a,b] such that |I;| < é. Ij is closed bounded = Jxy,yi € I :
My, = supf = f(xk),mk = i}lff = f(yx) [attainment of bounds| and |Ij| < 0, so Vk, |z — yx| < 6 =
Iy, k

My, —my < 3= . Then
U(f,P)—L(f,P)= My, — I;| < Iy|=——(b—a)=¢ Ve>0,
(1.P) = LU P) = 30— ml Bl £ 3 52l = = - =< v
hence by Theorem 1.1.11 f is integrable. (]

Theorem 1.1.16. f : [a,b] — R is monotonic. Then f is integrable. [It doesn’t have to be continuous!|

Proof. Let P be a uniform partition of [a, b] into n subintervals:

b—a

b—
I, = {a—&-a(k—l),a—f—
n

WLOG, let f be increasing. Then

Ui P =3 (bupf iy )

k} 1<k<n.

k=1
itz (e o)
telescopic
b—a
=50 fla) 0.
Therefore by Theorem 1.1.11 f is integrable. (]

Now we can integrate functions that cannot be visualized.

Example 1.1.17. Let (yx)r>1 be any enumeration of Q N[0, 1]. Define f : [0,1] — R:
0 z=0
— 1
x) =
f(z) Z o @ >0
kirp <z

It’s well-defined as Zk-zl ﬁ < 00. Also f is increasing. Choose any ¢ > 0,

fato) = Y =0
r, <x—+4
k:{rka

Hence f is integrable by Theorem 1.1.16.

1.2. Properties of Riemann integral.

Theorem 1.2.1 (Linearity of integration). Let f, g : [a,b] — R be integrable. Let ¢ € R. Then
(1) cf is integrable and fab cf = cfab f;
(2) f + g is integrable and f;(f +9) = f; f+ f; qg.

Remark. If f, g are integrable then o f 4+ (¢ is integrable and fab(af—i—ﬁg) =« f; f+p f; g, an immediate
result and equivalent form of the theorem.

Proof. (1) Assume ¢ > 0 (¢ < 0 - an exercise). Take any P = {I;,...,I,}. We have
SipCf =c S}lk.,pf R Ulcf, P) = cU(f, P)
i}lfcf =c i}lff L(ef, P) = cL(f,P)
Then Ulcf) = grelf;DU(cf, P)=c Fi)relng(f, P) = cU(f). Similarly L(cf)cL(f), so U(cf) = L(cf) =
U(f)=cflf.
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(2) U(f+9,P)=>F_sup(f +g) | Ix] <U(f,P)+ L(g, P). Exactness of inf = Ve >0 3P, P, € P
Iy

N———
<supf+supg
Iy, Iy,

such that
U(f,P) <U(f)+

Ulg, P,) <U(g) +
Let Q be a refinement of Py, P>, then

Ulf+9) <U,Q) +U(g,Q) SU(f, ) +U(g, P2) <U(f) +Ulg) +e.
Similarly L(f + g) > L(f) + L(g) — €. Since f, g are integrable, L(f) = U(f), L(g) = U(g), so

/abf+/abg—agL(f+g)gU(f+g)§/abf+/abg+57

and since ¢ is arbitrary, we conclude that
b b b
Li+9)=UG+9)= [ (Fra=[ f+ [

Theorem 1.2.2 (Monotonicity of integration). f,g: [a,b] — R are integrable. If f < g then ff f< f;g
Proof. g > f=g—f>0=VPeP,U(lg—f,P)>0=U(g— f) > 0. But g — f is integrable by

previous theorem, so ,
/ (9-1f)= / / f=U@-1)=

NN M

]

([l
Corollary 1.2.3. f:[a,b] — R is integrable. Then
b
inff-(b—a)< [ f<supf-(b—a).
[a,b] a [a,b]
Corollary 1.2.4 (Integral form of Mean Value Theorem). f € Cla,b]. Then 3¢ € [a, b] such that
7o) = — / f
the average value of f on [a,b]
Proof. Since f is continuous, it attains both inf and sup, hence
o,y f(z)=m, fly) =M
therefore by IVT f attains every value in [m, M } and by previous corollary,
m < r / J <M.
([l

Theorem 1.2.5. f:[a,b] — R is integrable. Then |f| is also integrable and

/abf s/:If.

Hint for proof. First prove sup |f| — inf |f| < sup f — inf f. Then integrability follows from Theorem
1.1.11. The inequality follows from —|f| < f < |f| and the monotonicity. O

Theorem 1.2.6 (Additivity). f : [a,b] = R, ¢ € (a,b). f is integrable on [a,b] < f is integrable on

[a, ], [e, b], and
/abf=/acf+/cbf-

Proof. =: f is integrable on [a,b] = Ve > 0,3P € P: U(f,P) — L(f,P) < e. Let P. be PU{c} (in
terms of endpoints), @ = PJ, 4 (a partition of [a,c]) and R = P|.,; (a partition of [c, b]):
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By definition it’s clear that

U(f, Fe)=U(f,Q) +U(f,R) ()
L(f, Pe) = L(f,Q) + L(f, R).

Hence

U(f,Pe) = L(f, P.) = U(f,Q) — L(},Q) + U(f, R) — L(}, R),

<e >0 >0

therefore

U(faQ)iL(faQ% U(va)iL(va)<57
giving us f |[a’c] and f |[c’b] are integrable.

«: We have that f|, , and f[,, are integrable. Then

[ac]
U(f?Q)_L(f7Q) <
U(va)_L(va) <

where @, R are partitions of [a, ], [¢, b] respectively. Consider P. = Q U R (endpoints) and use (x)
and (xx) to conclude.
We now establish additivity. We have

Ve > 0,3Q, R : ()

NN M

/abf<U(f,Pc)=U(f,Q)+U(f,R)<L(f7Q)+L(va)+g</:H/cbfﬂ
/abfz/achr/cbf—a.
/abf/:f+/cbf.

Theorem 1.2.7. f : [a,b] — R is integrable. ¢ : R — R is continuous. Then ¢ o f : [a,b] — R is
integrable.

and similarly

Since ¢ is arbitrary, we conclude that

]

Proof. f is integrable = bounded, i.e. IM > 0: |f| < M. So it’s enough to consider ¢ on closed bounded
interval [—M, M| which is continuous, meaning ¢ is bounded, i.e. 3K > 0: |¢| < K and ¢ is uniformly
continuous, which means

VE > 0,30z > 0: (z,y € [-M,M], |z —y| < bz) = [p(z) =) <E. (%)
Also, f is integrable, meaning

Vn>0,3Q, € P={l,.... 1.} : U(f,Qy) — L(f,Qy) <. (%)
We want to show that
Ve >0,3P e P:U(po f,P)— L(po f,P) <e
Take P = @,,. Then

n

U(po f,Qq) = Llpo f,Qn) = suppo f —infpo f | |1y

k=1 Tk

:=oscpo f
Ty
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The strategy is to break the sum into two parts: for the first sum we look at k’s such that sup f — 1}1f f<éz
Iy
which gives supp o f — 1nf<p o f < € by uniform continuity of ¢. For the second sum we look at k’s such
I

that supf — 1nf >0, Wthh there aren’t many by (#x) and bounded by 7:
Iy

n

> oscp o fII| + > olskc<pof|lk|§§Z|Ik|+2K > L

k:osc f <z k:osc f>0= k=1 k:osc f>6=
Iy Ty Iy

_ 2K
=g(b—a)+ 3 Z Oz Ik |

€ k:osc f>0=
Tk

€ kiosc f>0=
Tk

_ 2K
<gb—-a)+ = Z olskcf\Ik|

— 20— a) + XU, Qu) — L, Q)
<g(b—a) 2?7

where ,7 are arbitrarily positively small. Choose € = ﬁ, n= then the above = 5 + 5 =¢. O

2K27

Remark. (1) A composition of two integrable functions is not necessarily integrable.

Example 1.2.8. Given ¢ : R —» R and f : [0,1] — R defined as follow,

T = B,p,q € N coprime
q

1

1 z#0 q
e ={y 210 1@=30 .0

0

otherwise

then
1 2eQn(0,1)

0 otherwise

vof@={

which is not integrable.

(2) What about f o ¢ where f is integrable and ¢ continuous? Also not necessarily integrable.
Counterexamples for this case are a bit harder to find.

Theorem 1.2.9. f,g: [a,b] — R integrable, then f - g is integrable. Moreover, if g~! is bounded, then

g~ ! is integrable.

Proof. f is integrable means f2 is also, since Vz € [a,b], f2(z) = ¢(f(x)) where ¢ : y + y? on R which is
continuous. We now write

frag==((f+9?*=(f-9?%

ux\H

and by linearity of integration, f - g is integrable. If g=! is bounded, then Je > 0 : |g(x)| > € Vx € [a, b],
and let

1
; ly| > ¢
ely) = y

5 lyl<e

)
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¥

1

Then Vz € [a,b], p(g(7)) = =1 where g is integrable and ¢ continuous, therefore g~ is integrable. [J

g(x)
1.3. Fundamental theorem of calculus. i.e. how to compute ff f?

Theorem 1.3.1 (FTC). f:[a,b] — R integrable, F': [a,b] — R continuous and differentiable on (a, b)
such that I/ = f. Then

b
/ f(z) dz = F(b) — F(a).
Also called Newton-Leibniz formula.

Proof. Tt is enough to show that

since taking the sup and inf of L and U the equality still holds, which is now L(f) < F(b) — F(a) < U(f),
and since f integrable, L(f) = U(f) and therefore we have what we want to prove. So now let’s prove (x).
Let P ={Iy,...,Ix} where I} = [xx_1,z],1 < k < n. Note that Vk, Vei, € Iy, i}lff < f(ex) < supf,

k

Iy
and since F' is continuous on [zx_1, 2] and differentiable on (x;_1,x), by MVT

E|Ck S (xk_l,xk) . F(xk) — F(l‘k_l) = F’(Ck) . (Qi‘k — l'k—l) = f(Ck) . (zk - .I‘k»_1)

and therefore
i}lff|fk\ < F(ag) — F(rg—1) < supf|lx]
k ]

k

and summing over all k’s gives us

L(f,P) < Y F(ax) — Flax1) < U(/, P)
k

telescopic

and (x) follows immediately. d

Remark. f: [a,b] — R is integrable = bounded. So FTC cannot be applied (yet) to unbounded functions,
e.g.

Remark (Conventional generalisation). If b < a,

[

a
[ i=o.
a
which is consistent with additivity.

Theorem 1.3.2. Let f : [a,b] — R be integrable, define F : [a,b] — R,z + [ f. Then F € C[a,b].
Moreover, if 2 € (a,b) and f is continuous at z, F'(x) = f(x).

and
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Proof. Let z € (a,b). Vh € R sufficiently small that z+h € [a,b], F(z+h)—F(x) = f;—m = f= f;+h !
by additivity. f is integrable implies that 3M > 0: |f| < M. Then

z+h x+|h| x+|h|
/ f s/ If\éM/ 1 = M),

i.e. F is Lipschitz continuous, hence continuous. Checking left and right continuity at x = b, a is left as
an exercise. We now want to show that

|F(z+h) - F(z)] =

F(z+h) — F(x)

tig 721 - f(@),
i.e.
] 1 x+h
lim ﬁ/x fa-  f@) | =0

+[ot f(w) dt
But f is continuous at x, i.e. Ve > 0,36 > 0: |z —y| < I = |f(z) — f(y)| <e. Take h: |h| < . Then

z+|h|

1 z+h 1 1
E/ (f(t) = f(2)) dt) < 77 [f(t) — fl@)] dt < relh] =e.
. Al Ja — A
<e as [t—z|<|h|<6
Hence the desired result. O

Theorem 1.3.3. Let f : [a,b] — R be integrable. If f is right-continuous at a,

i [ "t

h—0+ h

Similarly, if f left-continuous at b,

Proof. f is right-continuous at ¢ means Ve > 0,36 >0:0<t—a < d = |f(t) — f(a)] <e. Let h:|h| <.

Then
1 at+h 1 at+h 1 at+h
- - == t) dt — — dt
i r-se=g [ a5 [ e
1 a+lh|
<o [ 1H0 - ) a
] Ja
1
< —¢|h| =e.
||
The proof is similar for the second part. (]

Remark. Theorem 1.3.2 and 1.3.3 together mean that f is differentiable at any x € [a,b] : f is continuous
at .

The definition of fab f Va,b € R allowed us to avoid looking at 1-sided limits for x € (a, b).

Example 1.3.4. Now we know Vp > 0,
/1 /1 xp—i—l xp—‘rl
ij = =
0 o \p+1 p+1

1.4. Methods of integration.

! 1

0:p+1’

which is hard to do by hand.

Theorem 1.4.1 (Integration by parts). f,g : [a,b] — R are continuous, differentiable on (a,b) such that
f', g’ are integrable. Then

/ fd' = F(b)g(b) - f(a)gla) — / fg.
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Proof. fg', f'g and (fg) = f'g + f¢' are all integrable as sums of products of integrable functions by
Theorem 1.2.7. Then

b
/ (f9)' = FO)g(b) — f(a)g(a) by FIC
b
=/ (f'g+ fq') by product rule

b b
:/ I'g +/ Iq by linearity.
Rearranging gives desired result. O

Example 1.4.2. For any a,b > 0,

b b b
/ log(z) dx = / log(x) - 2" dz = log(b)b — log(a)a — / %x dz
= log(b)b — log(a)a — (b — a).

Theorem 1.4.3 (Change of variables). f :[a,b] — R is differentiable such that f’[a,b] — R is integrable,
g is continuous on image f([a,b]). Then

b F(®)
[ st@r@a= [ g a
@ f(a)
This is true even if f(b) < f(a).

Proof. For x € f([a,b]), define

Glz) = /f o

which is continuous at z, so G is differentiable and G’(z) = g(«) by Theorem 1.3.2. Chain rule gives

dz

hence

b b
/ o(f()) - /() de = / G'(f(x) dz = G(f(b)) - G(f(a))
f(b)

f(a)
:/ g(t) dt —/ g(t) dt
f(a) f(a)

f(®)
= / g(t) dt.
f(a)

Example 1.4.4.

a 2 a 22 1,2 4
/ e zzdx :/ e 7 () dz.
0 0 2

Let g(t) = e, f(z) = % By theorem above the integral equals

2
2

E a2 .
/ e~tdt= —e_t’(f =1—-e 2.
0

Remark (Consider integrals as functions of limits of integration). In the proof of the theorem above we
established that: if f, h differentiable and g continuous, we have

d f(z) ,
S g = g(f @) £ (@)
by chain rule, and similarly
d a d h(z) .
@ Jun? t)dt=- g(t) dt = —g(h(x)) - I'(x)
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Example 1.4.5 (Construct solutions to certain PDEs). Let f : R — R be continuous, b: R x R — R be
differentiable,
b(z,t)
u:RxR%R,(x,t)»—)/ £(s) ds
0

where f continuous and b differentiable. Now consider the partial derivative, we have

Ou(z,t) _ Fb(z,1)) - %(Lt)

Ox

and dule, ) o
u(x,t) 05
et = (b)) - 5 (o)

by chain rule. Take b(z,t) = x — ¢t where ¢ € R is a parameter. Then

Qu(x,t) | 10t _ i) o1 4 %f(b(x,t))(—c) =0,

or c Ot
i.e. a solution is found to the first-order linear PDE
Ou  10u 0
oz T

parameterised by f € C(R).

Example 1.4.6 (Integrals can be used to define new functions). The error function:

2 T
erf(z) = ﬁ/o e dt, zeR.

where the integral is not computable, but FTC can be used to prove that erf is continuous. Or we could
define log(0,00) — R in the following way:

71
x +— log(x) :/ = dt
1 t

which has properties
e well defined Vz > 0;

1 Y1
log:r—Hogy:/ fdt+/ —dt

1t 1t
x 1 y

:/ Zdt+ —x dt
1t 1
z q Ty

= / n dt +/ —ds change of variable: s(t) = xt
1 x

- / Lat
1 t

= 1og(xy),

which, as we’ve seen, was difficult to prove using power series definition of log.

2. IMPROPER INTEGRALS

Definition 2.0.1. Let f : (a,b] — R be such that f is Riemann integrable on [c, b] V¢ € (a,b]. Then

b b
/ f = lim / I,
a € \l, 0 a+te
N~~~ D
Improper €—0+ Riemann

which is a serious generalisation: f can be unbounded. If the limit exists and is finite, we say f; f

N
converges. Otherwise fa f diverges.
Similarly, if f : [a,b) — R is such that f is Riemann integrable on [a, c] Ve € [a,b), then

b b—e
= lim .
[t [
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Example 2.0.2. Let p > —1, then

1 1 Zp+l 1
/ 2P dz = lim 2P dz = lim
0

el0 J, elo p+1 c
1 ght1
=lim| —— —
elo | p+1 p+1
—
—0 since p+1>0
1
Cp+ 1

So fol 2P dz < oo for p > —1, i.e. it converges. If p =1,
1
1
/0 o do = 161%1 logaz\i = lsifol(flog(s)) = 400,

so it diverges.

Remark. If p > 0 we get the same answer: if f is integrable on [a, b], then

[1- [
S

improper Riemann

by continuity, i.e. the two definitions are consistent.

Definition 2.0.3. Let ¢ € (a,b) and f : [a,b]\{c} — R be Riemann integrable on [a,c — 0] and [c + &, }]
for all § > 0, > 0 small enough.

Y

I ‘ T

a c b

Then
b c b c—0 b
= + = lim / + lim /
/af /af /Cf 510 J, f cl0 c+5f
improper  improper

NB 4, ¢ are taken to 0 independently.
2.1. Unbounded intervals.

Definition 2.1.1. f: [a,00) — R such that f is integrable on [a,b] Vb > a. Then

[Tr=m [

and similarly if f is integrable on [b,a] Vb < a

/;fzzbgnoo/baf

[e%s) c %S} c Ro
: = 1 li .
[oo /700 f * /c f Rli}nioo L1 f " Rzi)rr—il_oo c f
—_———

improper integrals defined above

and

~
Il
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where ¢ € R any fixed constant.
NB R; — —o0, Ry — 400 independently.

Example 2.1.2.

/ 2% dz

doesn’t exist. But
R

lim 22 dz =0
R—o0 R

and moreover, we can let Ry be some function R; and right hand side can be whichever real number we
want.

Exercise: check the RHS of the last definition does not depend on c.

Remark (Warnings). e The space of improperly integrable functions is a linear space, but not an
algebra (in the sense that f, ¢ improperly integrable # f - g is integrable). e.g.
1
f(@) =g(z) = z € (0,1]

v
are properly integrable since p = % <1, but x — % is not.
e Similarly, ¢ is continuous and f is improperly integrable & ¢ o f is improperly integrable. e.g.
1
2
ry—= vyl fiar—s — € (0,1].
pry—=ys, frax Nl (0,1]
Then ¢(f(z)) = L which is again not integrable.
e f is improperly integrable - |f] is improperly integrable. See notes and assignments.

Theorem 2.1.3 (Absolute comparison test). Let f : [a,00) — R be Riemann integrable on [a, b] Vb > a.

Suppose
oo
/ 1f] < oo,
a

/:Of<oo.

In this case we say faoo f is absolutely convergent.
More generally, if there’s a function g : [a,00) — [0, 00) such that |f| < g, then

o0 o0
/ g<oo:>/ f < oo.
0 a

Remark. (1) Compare this with the M-test for infinite series
(2) Similar statements apply to improper integral of f : [a,b]\{c} — R where ¢ € [a,b] which is not
necessarily bounded

Then

Proof. By Cauchy criterion, convergence of integral of |f| implies that

/ fl—/aLl /]
/ fl—/aLl f|'=’/:2 |f|‘=/:2|f|-
[ e

o0
/ f<oo
a
by the reverse Cauchy criterion.
For the second part, repeat the above steps, simply replacing f with |f| and |f| with g. a

Ve >0,3L, : Lo > L1 > L. = < e.

But by additivity

So

Therefore
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* cosa?
—— dx
o l+azlte

converge Ve > 07 We can’t get rid of the 1+ in denominator since that would give a divergence, therefore
we break it into two parts using additivity:

b cosa? d n *  cosa? d
—— dz —— dzx
0 1 + .%'8+1 1 1 + x8+1
—_——

Riemann integrable, so no need to worry

Example 2.1.4. Does

and for the second part we have

the | f] in the theorem
2 2
oo
coszT cosT
dx‘ = / g dx
1

* cosa? &
T dx| < s
1 1 +$5+1 1 1 +x1+s 1 _|_x1+a

<[ rrae s me

and the last integral can be computed analytically:
1 o0
€

We conclude the desired result.
3. SEQUENCES AND SERIES OF FUNCTIONS

Main task: justify the interchange of maths operations.

Example 3.0.1.
lim lim f,(z) Z lim lim fn(x)

T—>CN—00 n—oo r—Cc
b b
?
lim fn(x) dz i/ lim f,(z) dz
n— oo a a n—oo

o0 / o0
?
(Sa0) 23 ne
n=1 n=1
3.1. Pointwise and uniform convergence. Let f,, : Q@ — R, n > 1 be a sequence of functions on Q C R
(not necessarily closed bounded).
Definition 3.1.1 (Pointwise convergence). (fn)n>1 on Q converges to f : Q@ — R pointwise if
Ve € Q, lim f,(z) = f(x).
n—oo
Notation. f, — f.

Remark. Pointwise convergence is often not enough to justify various interchanges. [If all you know is
pointwise convergence, you do not know much.]

So sit tight for incoming examples of bad news!

Example 3.1.2. f,:[0,1] = R,z — z7.
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1/n

We know f,(0) = 0 Vn, and for z € (0,1], z'/" = elos® ™" = eulosz _, 0 — 1. So f, = f =

0 z=0
. which is not continuous. [Pointwise convergence doesn’t preserve continuity!]
1 otherwise

So
lim lim f,(z)= lim 1=1

x—0+ n—o0 r—04

but
lim lim f,(x)= lim 0=0.

n—oo x—0+ n—00

Example 3.1.3. Pointwise can be very non-uniform. Let

2nx nggi
2n
1 1 1
fn(z) n(x n) 5, <TS
1
0 T > —
n
—h
1 —f2
—f3
0.33 0.5 1

We claim that f,, — 0. We know f,,(0) =0 Vn = f(0) =0, but also

1
Vx>0,fn(z):OVn:E<:c.

However

sup |fn(z) —0/=1 VneN

z€[0,1]
which is constant and doesn’t even depend on z! Even worse, define
Wy, = nfy (Witch’s hat)

Then w,, — 0 still but

sup |wn(x) — 0| =n
z€[0,1]

which goes to oo! Pointwise convergence loses all its significance here.
Example 3.1.4. Let
fn "R—>R,z+— X[n’nJrl] (.’E)
Indicator function

Then

lim X[n,n+1] (:E) =0 VreR,

n—oo
i.e. Ay nt1) — 0. What happens to the improper integral?

oo

Jim | Hn = Jim 11 =1

[m nlL}H;o X[mn-i-l] = [mo =0.

but
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Example 3.1.5. f, : z +— sin(nz) on R, n € N. Take z = Bﬂ', 0 < p < g, i.e. rational multiple of 7.

q
Then sin((kq)z) = sin(pkn) = 0 and sin((2kq + 1)x) = sinz > 0 which converge to different limits. So we
claim (f,,) # . (Doesn’t converge pointwise)
However for any f € [a, b]-Riemann integrable,

(Riemann-Lebesgue Lemma).

Example 3.1.6. Let g,(z) := 2222 3 € R. Then |g,(z)| < 1 — 0. So g,, — 0. Unlike the Witch’s hat,
even sup|g,| — 0. But
R

!
(hm gn> # lim g/, = lim cosnz

n— oo n— o0 n— oo
which doesn’t exist.

Example 3.1.7. (f,) : [0,1] — R defined in following way:

Note that f, 4 as Vo € [0,1], fn(z) contains infinitely many 0’s and 1’s. However fol fn — 0 since
sup f = 1 constantly but the size of subintervals goes to 0.

Definition 3.1.8 (Uniform convergence). A sequence f, : @ — R, n > 1 uniformly converges to
f:Q—>Rif
Ve >0, 0N :n > N, = |fu(z) — f(z)| <e Vx € Q.

Notation. o [, = f.
e f, 73 means f, does not converge uniformly.
o ||fnlloo = sup|fn|- Left-hand side is called sup norm of f,.
Q
So fn, = f means that Ve > 0, 3N, : n > N. = ||f — fulloo < € or even simpler
lim |f = falleo = 0.
n—oo
Note that in this language, pointwise convergence can be written as
li_>m |fn(z) — f(z)| =0 Vz € Q.
Proposition 3.1.9. (f, = f) Z (fn—=1)

This is trivial.
Definition 3.1.10. A sequence (f,) on  C R is uniformly Cauchy if
Ve >0, AN :n,m > Ne = || fn — finlloo < €.
Theorem 3.1.11. f, = on Q < (f,) is uniformly Cauchy.
Proof. = Let f: Q — R be the limit, i.e.
Ve, AN :n> Ne = || fn — flloo <

€
5"
Take any n,m > Ng,

”fn - meoo = Slglzplfn - fm| = Slép|fn - f + f - fm|
< sgp( |fa = fl+1fm — f)  triangle inequality
< Sgp|fn — fl +Sl§12p‘fm = fl=lfn = flloo + 1fm — flloo

<4o=
2 2—5.

[We also proved triangle inequality for || - ||oo. Justified terminology!]
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<: We have Ve, AN, : n,m > N = sup|f, — fm| < &. But |f, — fin| < sup|fn — fim| V& € Q by
Q Q

definition, so (f,,(x)) is Cauchy, so it converges to f(x) for some f : Q — R, i.e. f,, — f pointwise.
We then write Vn, m > N¢,
Jm =& < fn < fn +eon Q
(this is just rewriting the hypothesis of being Cauchy), then take lim,,_, . we have
f—e<fn<[+e

sol|fn—fl<eVreQie f,=f.
O

Remark. | - |« is a norm on the space of bounded functions on 2, denoted B(€2). Notion of a norm
means that || - || : B(2) — R has following properties:

(1) |Iflle =0 Vf € B(Q)
(2) [IAMflloo = Ml fllc YA €R
(3) Vf,9 € B, |If + gllco < I flloe + 19llo

Theorem 3.1.12 (Uniform continuity preserves continuity). A sequence of continuous functions (f,) :
Q — R, n > 1 converges uniformly to f: ) — R. Then f is continuous on Q.

Proof. fn, = f means

€
(1) Ve >0, ElNE:n>NE:>||f7L_f||OO<§'
Also f,, is continuous at xg € 2, meaning

(2) Ve >0, 36. >0 |z — 20| <6 = |fn(z) — fulzo)| < %

Fix any n > N, and 5§n) > (0. Then
|f(z) = f(zo)| = |f(z) = falz) + fu(z) — falzo) + fulzo) — f(20)]

)_
) = fn(@)| + | fn(®) = fo(zo)| + | fn20) — f(20)|

<|f
<§ by (1) <5 by (2) <§ by (1)
€
<3-;=¢
3
]
Notation. Cp(€, ] - ||«) is a linear space of continuous, bounded functions on 2, equipped with || - ||
norm. (co-dim normed space)
Theorem 3.1.13 (Completeness). Cp(£2, ] - ||) is a complete normed space, i.e. any Cauchy sequence

(fn) C Cp(Q) converges to some f € Cp(€2).
Without using all the jargon: a uniformly Cauchy sequence of continuous bounded functions converges
to a continuous and bounded function.

Remark. A Cauchy sequence (a,) C (V]| -|]) 1is such that
——
normed space
Ve >0, AN, : n,m > N, = |lap, — an|| <e.
This definition ensures that the two formulated versions of Theorem 3.1.13 are equivalent.

Proof. f, = f and f,, is continuous Vn, so by Theorem 3.1.12 f is continuous.
We can pick n: ||f — falloo < 1. Then

[fllsollfr 4 f = fulloo < Ifnlloc +1If = frlloo <00 +1=00.
Therefore f is also bounded. (]

Example 3.1.14. f, = 53-X_, ,; on R. Then [|f;]lc = 35 — 0. So f, = 0. And ffooo fn=1%#

ffooo lim, o fn. But good news is on bounded interval this inequality does not occur.

Theorem 3.1.15. f, : [a,b] — R is integrable Vn and f,, = f : [a,b] = R. Then f is integrable and

I2 f = [0 F (e
b b
lim / fn:/ lim_ .
a ) a

limit and integral is interchangeable in this case.
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Proof. Uniform convergence means

3

%>a3Ngn>Nf$WfﬁMm<ﬂ;:ﬁ

Integrability ¥n means
Ve >0, AP, € P: U(fnaPn) - L(fnaPn) <

DO ™

where we let P, = {I1,...,I}. Fix n > N.. Then
Ulfur Pa) — L P) = 3 (supf ipff> 1Al
k=1 *
Side computation:
supf = sup(fpn + f — fn)
Iy Iy
<supf, +sup(f — fn)
Iy Iy
<supf, +sup|f — fal
Iy Iy
<supfn + |f — falloo-
Iy
Similarly we can get a lower bound for i}lff, namely ipffn —|If = frlloo- SO
k k

m

> (sups ~ gt ) I < Z (supfn e ) 1 2 W fle I

k=1 i=1 m by uniform convergence

<5 by integrability

3 9
<§+2m(b*a)f€,

which implies integrability of f.

Now
b b
fn_ S/ |fn_f|
a a
b
g/ 1fn = flloo this is why we need bounded
a
= lfa = flloc (b — a).
—_——
-0
So [V fu— [0 F. O

3.2. Functions of 2 variables.

Definition 3.2.1. f:Q C R2 = R is continuous at x € Q if

Ve >0, 30(e,x2) > 0: (y € Q, |z — y| <0)=|f(z)— fly)] <e.
—— —————
Euclidean distance absolute value

This is the same with previous definition of continuity, only 2-variable.
Definition 3.2.2. f:Q C R? — R is uniformly continuous on 2 if
Ve >0, 0 : (z,y e Q: |z —y| <d) = |f(z) — fly)| <e.
This is the same with Definition 1.1.13.
Theorem 3.2.3. Q C R? closed and bounded. If f : Q — R is continuous then it’s uniformly continuous.

Hint for proof. Use Bolzano-Weierstrass theorem for bounded sequences in R?. (Similar to proof of
Theorem 1.1.14.) O

Theorem 3.2.4. Let f : [a,b] X [¢,d] — R be continuous. Define I : [¢,d] = R, t — f(f f(z,t) dz. Then I
is continuous on ¢, d].
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Proof. We know [a, b] X [c,d] is closed and bounded. Then f is uniformly continuous. Fix any tg € [c, d].
Then

b
160) = 1) < [ 1£(2,0) = . to)]
Uniform continuity means Ve > 0, 35, > 0 :
(|('T7t) - (.’[Toﬂf())‘ <0, (mvt)7 (S(:o,to) € [avb] X [C, d]) = |f(:L‘,lf) - f(l‘o,to)| <

Now pick any ¢t : |t — to| < §.. Then |(z,to) — (z,t)] < de. So

€
b—a’

3

b
10 - 1) < [ 5 ==

i.e. I is continuous at to by definition. O

Theorem 3.2.5. f, % : [a,b] X [e,d] — R are continuous. Then ¢ — f: f(z,t) dz is differentiable on

[e,d] and
o [° Y,
a/a f(z,t) da:z/a af(x,t) dex.

Proof. Define
b
zwyz/fu@dx

and

b
of
G(t) = —(z) dz.
0= [ Gra) da
We would like to show that F is differentiable on (¢, d) and F' = G.

We write
F(t+h)— F(t) —G(t)‘dx: /b f(z,t+h) — f(z,1) o) da
h u h
and since f(z,-) is continuous and differentiable on [c, d], we can apply MVT and the above is
bof of

E(xﬁ) - g(%t)

a

for some 7 € [t,t + h]. But % is continuous on closed bounded interval [a, b] X [¢, d], so we have uniform

continuity. Therefore Ve > 0, 39, :

|7 —t| < 0 = ’(Z(%T) - (:r,t)‘ <

So pick |h| < ., we have

F(t +h) — F(t)
h
F(t+h)—F(t)
h

b ¢
—G(t)‘dx</ bidac:a

Take lim supj,_,o and liminf;,_,o of . They are equal to each other since ¢ is arbitrary. So

o (et h) — F(1)

h—0 h - G(t)

Theorem 3.2.6 (Fubini). Let f : [a,b] X [¢,d] — R be continuous. Then

b df(x,y)dy dz = ' bf(w,y)drv dy.
LU Ny

Example 3.2.7 (Why is this useful?). Consider F : [0,00) x R — R continuous. Fix any n € N, ¢ € R,.
Then (z,y) — 22" "1 F(22,y) is continuous. We want to calculate

c b
/ </ TR (22 y) dy) dz.

But 22" is odd, so is 22" F, so [ x*"*1F(22,y) dx is zero. Using Fubini we reverse the order and
answer is immediately 0.
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Proof. Define
d
T / flz,y) dy

and )
yH/ f(x,y) de.

They are continuous and therefore integrable by Theorem 3.2.4. So both sides of the theorem are

well-defined.
F(t) = / (/Cdf(x,y) dy) dz — /Cd (/:f(x,y) dx) ay,

Let
where ¢ € [a,b]. We would like to show that F'(b) = 0.
What do we know?
(1) F(a) =0 by conventional generalisation of FTC
(2) F € Cla,b], since both terms are continuous, first by FTC, second: (t,y) — fat f(z,y) dz is

continuous as a function of 2 variables: since f is continuous therefore uniformly continuous, in
particular f is bounded, i.e. IM > 0: |f| < M. We write

t to
/ f(z,y) dz — f(z,y0) dz

a

to

/ () = ) do = [ ) da

t
< / ) — Fwo) ot | [ Fyo) de

t

t
< /\f(x,y>—f<x,yo>|dx LMt~ .

—0

estimate it with uniform continuity of f
So by Theorem 3.2.4 second term is continuous.
(3) By FTC derivative of ¢ — f; (fcd flz,y) dy) dz is fcd f(t,y) dy, and by Theorem 3.2.5 derivative

of t — fcd (fat fx,y) d:z:) dy is equal to

/Cd <§t/atf(:c,y) d:c) dy/cdf(t,y) dy.

So F'(t) = [ f(t,y) dy — [ f(t,y) dy = 0.
Therefore by MVT F(b) = 0. O

Example 3.2.8 (Without some assumptions about (z,y) — f(z,y) Fubini fails). Let

1 1 2 2

T~ -y
I := —2 _dy ]d
/o (/ (@2 +12)2 y) !

where the 2-variable function is not continuous no matter how you assign the values when z = y = 0. So
consider f defined on (0, 1] x (0, 1] and treat the integrals as improper integrals. Doing it in the defined

order we have )
1 y= 1
1
/ 2y 5 dx:/ ﬁdx:z,
0o \T°+t¥ =0 0o 1+x 4

(do a change of variable: let z(t) = tan™'(t) to get the result), but reversing it we have, by symmetry, —Z.

Notation. C™ means set of continuous functions that are n time differentiable with its nth derivative
continuous.

Example 3.2.9 (Motivation for next theorem). We already know f, = f doesn’t imply that f is
cl

differentiable. Moreover, take
1
1\ 2
fulz) = (x2 + n) e C*(R),
2
then f, = |z| since we can bound z? + L by <|x\ + ﬁ) and we have

1 1
fol)—|z| <|z|+ —=—|z|=—=—=0 VzeR

vn vn
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But |z| is not differentiable at 0.
()

Theorem 3.2.10. (f,) C C'la,b]. Suppose f, — f : [a,b] = R and f, = g : [a,b] — R. Then
f€Cla,b) and f' = g.
In other words,

/
(lim fn) = lim f,.

Proof. We have (f}) C Cla,b]. Since g is the uniform limit, g € Cla, b] is integrable. We write

[o=[imn = i [ fo i () - fa@) = f@) - ),

n—o00 n—oo J, ~~ n—oc0
Theorem 3.1.15 FTC
ie. f(z)= f(a)+ f; g, so f'(x) = g(x) by FTC. Since g is continuous, f € C[a, b]. O

3.3. Series of functions. Let (f,,) be a sequence of functions on €. Then a series of functions is also a
function

T ka(x), x € Q.
n=1

Definition 3.3.1. Let
Sn::ka : 0 = R, n>1
k=1

o0
be the sequence of partial sums. We say that Z fr converges to S : Q — R pointwise (uniformly) if

k=1
Sp — (=2)S.

(o]

Theorem 3.3.2. Let (f,) be a sequence of integrable functions on [a,b] such that ka converges
k=1

uniformly. Then

> fe otlab >R
k=1

is integrable and

b o0 0o b
/ =Y
@ k=1 k=179

i.e. series can be integrated term by term.

Proof. Consider

Sn Z:ka, SZ:kaz
k=1 k=1

and we know S,, = S. By linearity S, is integrable. By Theorem 3.1.15, S is then integrable, and

moreover
b b

/ S = lim Sh.
a n— oo a
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So
b ©© b n n b 0 b
= lim = lim = .
/a E fi = lim j E Ik ij j Tk E j Ik
k=1 k=1 linearity k=1 k=1

Example 3.3.3 (Do everything by hand). Let A > 0 and define

oo

S(x) := Ze”‘kx, z € [1,00).
k=1
What is [ 57
Notice that the series converges uniformly on [1,00): let

n

Sp(x) := Z e ke

k=1
then

< e Am —0

n
E efAkm

k=m+1

1Sn(2) = Sm(2)| =

00
E 67)\101
k=0

since it’s geometric. So it’s Cauchy therefore it’s uniformly convergent. Therefore we can integrate it term
by term:

/S:/ Ze"\’mdx:Z/ e M dy
1 bok=1 k=1"1
— 1 _ L1, &
=2 g e
k=1 k=1
_1 e
—)\log(l e )

Checking that applying Theorem 3.3.2 here to improper integrals is legitimate is left as an exercise.

Remark. We can then integrate any function given by uniformly convergent Taylor or Fourier series and
set the answer as an infinite sum.

Theorem 3.3.4. (f) C C'[a,b] : Z fx converges pointwise and Z /7. converge uniformly. Then
k=1 k=1

x»—)ifk € C'a,b]

k=1

and
oo / oo
() -2
k=1 k=1
i.e. series can be differentiated term by term.

Proof. Let
Sn=> fu, S=> fi
k=1 k=1

Given that S,, — S, S/, = g, we have, by Theorem 3.2.10, S € C'[a,b] and S" = 1i_>m Sl
n—oo
We use the fact that (f,) C Cla,b] = S, =€ C'[a,b] (algebra of differentiable functions).

Therefore
n ! n oo
— H ! /
(o) - 3n-3on
k=1 k=1 k=1
O

Theorem 3.3.5 (Weierstrass M-test). Let (fi) be a sequence of functions on  C R. Suppose Yk €
N, 3My, > 0 : |fx| < M}, where Y 72 | My < oo. Then Y ;- | fi converges uniformly on €.
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Proof.
oo
Z M, < o
k=1
if and only if (Z Mk> is Cauchy if and only if
k=1
n m
Ve >0, 3Nz in,m > Ne = | My — > M| <e.
k=1 k=1
Then Vz € Q,
[Sn(@) = Sm(@)[ = | Y ful@)| < D |ful@)|< D Myp<e.
k=m-+1 k=m+1 k=m-+1
Therefore (S,,) is Cauchy, therefore uniformly convergent. O

3.4. 3 non-examinable (but exciting!) topics.

3.4.1. Continuous but nowhere differentiable functions. Natural example: trajectory of a Brownian particle
(sample path of a stochastic process known as Brownian motion)
We will explain construction of the Weierstrass function (1872).
The starting point:
¢o:R—-R, =z dist(z,2)

Our function will be constructed as a limit of the series of piecewise linear functions built out of ¢.

Remark. Lévy (1950) used this idea for his rigorous construction of Brownian motion.

¢

0.5+

T
0.25 0.5 0.75 1
It’s sometimes called the Sawtooth function.
Obvious properties:
(1) ¢ is continuous
(2) ¢ is periodic, i.e. ¢(x +1) = ¢p(x) Vz € R
(3) ¢ is piecewise linear
(4) ¢'(x) € {£1} at all  where ¢’ is defined
We can write a formula:
1
v la) o) < lz) + 5
blx) = )
2] +1—x, LxJ+§<x<[xJ+1

Now define Weierstrass function

f:R—R, x»—)an(x), n >0
n=0

1
where f,(x) = —¢(4"z). So property 4 still holds, fy is just ¢, and f; is drawn in the same plot above.
4’!L

Claim. f is continuous on R.
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Proof. We know ||¢[| = 3 and

1 1 B 1 1 11
Il = | oo = ol = swlel = 15 <
Moreover,
Z — < o0 (geometric),

therefore Y - fi converges uniformly on R by his own M-test. So

Sh=d =t

k=0 k=0
and f is continuous by continuity of fj . |

Claim. f is nowhere differentiable.

Proof. We would like to show that for any zg € R,
. z+h)— f(x
lim flz+ })L f(z)
doesn’t exist. It suffices to show that we can find a sequence (hy,),>0 C R such that
(1) h, =0,
P NCEINEYE

doesn’t exist .
n—0 hy,

1
Define h,, = im where the sign is chosen carefully in such a way that

1
4”:170, 4”(.’1]0 + hn) € |:]€, k+ 2:|
for some k € Z. (These points belong either to [Ic — 7, k] or [k, k+ %} for some integer k. The above is

just shorthand notation. In particular, we are choosing the sign so that the two points are not separated
by a point at which the function is not differentiable.)

p(4"x)

0.5 1

4" x

025 05 075 1

Then clearly lim h, =0, and f, |[a:o Sothn] has a constant slope equal to £1. We then write
n—00 ’ "

fn(@0 +hn) = fulwo) _ ¢(4"0 + 4" hn) — G(4"30)

= +1}.
3) - o e {+1}
Now fix m > n + 1, and we have
ez
m m
fm(@o + hn) — fm(@0) _ ¢(4™xo + 4™ hy) — G(4™wo)
@) h - 4mh =0

since ¢ is periodic with period 1. And for m < n, if f,, is not smooth at points z, i.e.

4mx:g for k € Z,
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then for the same z,

k K
AN = 4P (M) — 4 (2 ) =
x (4™x) ( 2) 5
where k' = 4"~™ . k, n > m. This means if m is not smooth then n is not either.
We conclude that the set of points at which f,, changes slope is a subset of points where f, changes
slope, n > m. Also, if f, |[xo o-+hn] has constant slope then so does f,, |[x0 wothn] s T2 T
In plain English, the indifferentiable points of f, are also indifferentiable points of f,, ;1. Finally, we
write
hp) — m hn) = fm
f@+hn) = f(z —lmzf (zo + — Jm(2o)

hn N—oc0 n

Z fm x0+h fm(xO) by (4)

m=0

m=0

where ¢, € {£1}. Taking the limits to get to derivative, we have

. flz+ h
Jim Z e
which diverges! Hence desired result. O

3.4.2. Space-filling curves. Aim: construct a surjective, continuous map from [0, 1] to [0, 1] x [0, 1].

Surjective is not that hard: define 7o : [0,1] — [0,1]? like this: write numbers in [0,1] as 0.ajaza3 . . .
where a; € {0,1,...,9}. Then take the two subsequences and form a ordered pair, an odd and an even:
(0.arasas . ..,0.a2a40aq . ..). It’s in fact bijective.

But it’s not continuous! So is it possible to reach the aim? The answer is of course positive.

We will review Hilbert’s construction of the curve (1891), the very first example is due to Peano (1890),
as a uniformly convergent sequence of piecewise linear curves.

Terminology:

e A curve in R? is a continuous map 3 : [0,1] — R2, ¢t — B(t) = (B1(t), B2(t))
o It’s useful recalling that § is continuous at ty € [0, 1] if

Ve >0, 30 > 0: |t —to| < I = |B(t) — B(to)] <&,

and this if and only if 1, 8 : R — R are continuous
e The image of B, Im(B3) = B([0,1]) C R?
e A curve v : [0,1] — [0, 1]? is called space-filling or SPC if Im(v) = [0,1]2.
We now define the Hilbert curve
v = lim 7,

n—oQ

where 7, = 7. And here’s the construction. Denote unit square as Sy.

(1) Divide into four, connect centres of squares counterclockwise, and connect the two top centres
with two vertices. Before parameterising 1, we label the smaller squares as Sy.g, So.1, 50.2, S0.3
counterclockwise. Now notice Sy, C Sp. We want our parametrisation satisfies that v; ([0, i]) C

SO,Q, Y1 ([4,2]) C So 1, 71 ([2,4}) C SQQ, 1 ([ ]) C 50,3. We can then write:

(2t,1—2t),

1
—1-2t
(11-2),

IN
~
N

A
-
N

7(t) =

AN
.
N

N
)
~
|
N | —
N
N———
o~ Pl W I~ o
AN
~
A
col~1 oo|lut 00| W |

(2t —1,2t —1),

IN
-
IN
—
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(2) Now create 4 copies of Im(7;) and connect them together in 4 divided squares to create ~s:

The lower two are just translations, but we have to rotate for the upper two (5 counterclockwise
and clockwise respectively) to keep the curve starting from top left and end at top right. To
make sure the direction of parameterisation makes sense, we also have to reflect horizontally. And
finally we need to scale it down by a factor of 2 to make it a unit square.

We again, as before, enumerate the 4 squares of size % X % as So.m, 0 <m < 3. We also have

1

16 squares of size 7 X %, and we enumerate them as Somym,, 0 < m1,ma < 3, where m; is the

4
index of the % X % squares and mo is similar to m as in how we enumerate Sy ,,,’s. Note
SO,ml,mQ - SO,ml le,mg.

For parametrisation of 5, we notice

1

Ao1(4t), 0<t< 1

1 1

A4t — 1), —<t< -

_ 4 2
72(15)* 1 3
A 4t — 2 - <t< -

271( )7 5 =St>7

3
A3’yl(4t—3), Z Stgl

(basically speed it up in the smaller squares and impose lags to make sure every part of it satisfy
the original parametrisation with ¢ ranging from 0 to 1). So we don’t need to invent a new
parametrisation. Notice 2 goes through all 16 squares and spend Tle of the time in each of it. Let
us treat 0.myms now as quaternary fractions:
m m
0.mime = mq X 471 —+ mo X 472 = Tl + TGQ’

since we keep dividing by 4, it’s better to use base 4 than base 10. Notice by construction

V2 ([m1m2,m1m2 + 1] 412> C So0.myms
where m1mas, a quaternary number, is equal to m; x 41 + mg x 4% = 4mq + mo.

(3) Now we can construct v,41 from 7, generally, in a way exactly the same as how ~, is constructed
from ~;: enumerate counterclockwise, translate, rotate, reflect and scale. And we have a new
index for smallest squares, namely So.m,ms...m,- Note So.my..m, C So.m;...m, for any k < n.
Parametrisation of 7,1 is again recursive like what we wrote for 7,.

Now we have 7, : [0,1] — [0, 1]? such that
e it’s piecewise linear, continuous, passing through centre of each 4™ squares of size QL
* v, ([0.m1 ce.My,0my...m, + 4%]) C Somy..m, -
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We need to establish

The limit lim ~, exists and is continuous
n—oo

v is space-filling.

Let’s do this part by part.

(1) We know +,, are continuous, so to prove v is continuous we only need to construct uniform

continuity, but we don’t know the limit, so instead we construct uniform Cauchy which is
equivalent.
Fix t € [0,1]. For any n € N,

1
Imy,...,m, €{0,1,2,3}:t € {O.ml...mnH,O.ml...mnH+W]
1
- O.ml...mn,O.ml...mn+4—n .
Since clearly
0.my...Mmpy1 =2 0my...my
and
1 1 3 1
0~m1~--mn+1+mSO.ml...mn—i—m-i-m=0.m1...mn+4—n.

This means v, (t), Yn+1(t) € So.my...mn- S0 |[Ynt1(t) — T (t)| < g, length of diagonal. So

VYm,n € N, Vt € [0, 1], we have
Vntm ) = @) < Vntm () = Ynem-1O] + [Ya+m—1() — Yntm—2()|+
st ‘7n+1(t) - ’Vn(t)‘
<V2 (27Tl g gL g g

o0
<vV2e2mtt Yotk .
k=0
geometric=2
as desired.

We now want Vp € [0,1]%, Jty € [0,1] : v(tp) = p. By construction, Vd > 0, 3t € [0,1] :
|v(t) — p| < d: how? Consider partition of [0,1]? by 4" squares of size 5. Then V7, €

[O.m1 e My, 0my . My, + 4%] s Yn(Tn) € So.my...m,,- Choose 0.m; ...m,, such that S € Sy m,..m,, -

Then |V, (1n) — p| < 2—‘/3 So

V2
V(70) = I < [v(70) = Y ()| + [0 (m0) — 2l < Ml7 — nlloo + on — 0.

Now set d = %, n € N. Then we are dealing with a sequence of time (¢,,) : lim, oo | ¥(tn) — p| = 0.

=

<
Equivalently, lim ~v(¢,) = p. But (¢,)n>1 doesn’t have to converge. But! (¢,) C [0,1
n—oo -

3

/ which is

bounded closed. So apply Bolzano—Weierstrass to get a subsequence t,,. Then klim tn, =10 €
— 00
[0,1]. So

p=lim y(tn,) = 7 (klggotnk> =(to)-

continuity

Finally we ask: is v bijective? It’s actually not injective, since there is a dense set of points of self
intersection: v(t1) = y(t2) but t; # to.

Theorem 3.4.1 (Netto’s). A bijection between two manifolds of different dimensions (hypercubes in R™)
cannot be continuous.

3.4.3. Cantor function, aka Devil’s staircase. Let (f,)n>0 be a sequence of functions on [0,1]. fo(z) := z.

Then

1 1

1 1 2
fn+1($) = 5 §<.’£<§

1 1 2

-+ = — —<zx<

2+2fn(3x 2) 379571
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k —fo
—h
—
3|
4
1
L
1]
4
1 2 1
3 3

Observations:

* fn:[0,1] —[0,1]
e increasing

o fnt1(0) = 3 fn(0) = %2fn71(0> . %n+1f0<0) _ 0
N R Y O
induction

Claims:
(1) fn € C[0,1] ¥n > 0.

Proof. Use induction. Obviously fy; € C[0,1]. Now suppose f,, is continuous. Then f,;1 is
continuous on [0, 1) U (%,2) U (2,1] by construction. We then only need to check two points

. 33
I:§7§
We have
li =1 1 3 —11' —1 1—1
:#I%lfnﬂ(x) = xlrnél §fn( r) = ) xl?llfn(x) = ifn( ) = 9

and similarly lim,| 1 frt1(z) = 4. Two limits agree so continuous at 3. Similarly it’s continuous
at % ]

(2) The sequence (f,,) € C[0,1] is uniformly Cauchy. Therefore the limit f := lim,,_,o f5 is continuous
on [0,1], which is defined as Cantor function.

Proof. We have

11 = Folloo < max ¢ sup |fos1(2) = fu(@)]; SUP [fas1(2) = fu(@)], sUP|fat1(2) = fu(2)]

1 2
03 53 351

= max é[sup] 1a(32) = fo (3, ;[sup] a(32) = fu-1(30)
0,% 21

= max {;Sup|fn(m) — fo-1(2)], lsup|fn(x) - fnl(ff)}

[0,1] 210,1]

1
= 5sup|fu(x) = fa-1(2)]
[0,1]
1
= 5 an - fn71||00 .
<c

If we iterate this we have

2

1 1 "
||fn+1 - fn”oo < 7||fn _fnflnoo S o anfl - fn72||oo S S 5 ||f1 - fO”oo
2 2

-2
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So Vn,m € N,
an-&-m - fnlloo < ||fn+m - fn+m—1||<>0 + an-&-m—l - fn-&-m—?H +oee ||fn+1 - anOO
1n+m 1n+m71 1n+1
<C z ceeg
(2 3 Tty )
1n+1 s 1k
<- C - =0
2 — 2
——
geometric
O

Properties of Cantor function:

(1)
(2)

f:10,1] — [0,1] is continuous, monotonically increasing and f(0) =
surjective. Also by Theorem 1.1.15 it’s integrable.
Take lim,,_,~ f we have

0, f(1) =1. By IVT f is

1 1
Ef(:h:) O§$§§
1 1 2
1 1 2

_ - — —<zx<
2+2f(3x 2) 37w71

a functional equation for f. Therefore

/Oéf(x)dx:;/oéf(?)x)dm:

é/olf(m) dz

and
/jf()dx—Jr /f3m—2 7,+ /f dz
so
/f+f szt / /f,
hence [, f =

We know f is Constant on By = ( %) Obviously it’s also constant on Ei; = %EO7 B =
5 + 3E0’ and f‘Em = 47 f|E12 =
|Eol = 3, |E11| = |E1g| = §.

More generally, if f|, is constant, then it’s also constant on %E, % + %E We iterate this and
after k steps we have

1
3
% Moreover they do not overlap since f is continuous. Note

Eo, E1,1, B2, F21, B2, Fa3, B4, .., B 1, ... By ok,

a total of 2F*t1 — 1 intervals of length % % . %%, on which the value of f are

m

e k+1 _
9k+17 m <2

—
A

L

i.e. distinct. Therefore they are disjoint. The miracle here is that the total length of these intervals
is

oo

1,1,
3 32

2
9 2
3 1—5

The set C' := [0,1]\E is called Cantor set. Its total length is zero, yet f : C' — [0,1] is surjective: a
standard example in measure theory, fractal geometry, analysis, ...

Remark. Please take a look at the exercises at the end of week 6 notes, giving a more analytic characteristic
of Cantor set and a formula for Cantor function.
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4. COMPLEX ANALYSIS

4.1. Review of complex numbers. C = {x + iy, x,y € R} where i2 = 1. This gives a field of complex
numbers, in other words you can multiply and divide (nonzero denominators).

Sz

Rz

Notation (Conjugate). z := z — iy

Notation (Modulus). |z| := /22 + y?
Recall these properties:

Note there is an isomorphism between R? 2 C: (;) = (iz) This is norm preserving: |z| = H (fj)

R2
(Euclidean norm).

4.2. Introduction.
Definition 4.2.1. (2,)nen C C converges to zy € C if
Ve >0, N, :n > N, = |z, — 20| < &.

Equivalently, Tlllg%) |z, — 20| = 0.
Definition 4.2.2. 2 C C is open if

VzeQ, Ir>0:B,(2)={weC:|lw—2z|<r}C.
where B is called an open ball (which is open).
Definition 4.2.3. Q C C is closed if Q¢ := C\( is open.
Notation (Closed ball). B,(z) = {w € C: |w— 2| <7}

Definition 4.2.4. K C C is sequentially compact if for any (zx)reny C K there is a subsequence converging
in K. (Sequentially compact < closed and bounded)

Definition 4.2.5. A C-valued function on C is a map f : C — C which can be written as z = x + iy —
f(z) = u(z,y) +iv(z,y).

So f can be thought as a function R? — R?, (I> — (u(a:,y))
y v(z,y)

Definition 4.2.6. f:Q C C — C is continuous at zy € € if
Ve>0,30>0:(z€Q,|z— 20| <d)=|f(2) — f(z0)] <e.

Equivalently, Zli_)HZlo f(z) = f(zo0)-

Definition 4.2.7. f: \(L — C is complex differentiable at z € Q0 if

unless state otherwise this is open

o FE R~ £G)
h—0 h

where h € C exists. In this case the limit is called the (complex) derivative, denoted f’(z).
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Recall in context of multivariable real functions, f : R® — R* is differentiable at p € R™ if 3D f(p) €

L(R™, R¥) :

i 1@+ 1) = f(p) = Df (p)h|x

h—0 12|
We cannot divide by h as R™ is not a field, but C is a field, so formula in Definition 1.1.13 is well-defined,
albeit it looks more like a definition of %. Hence it must exist along any curve passing through zero.
This means we can derive the simplest necessary condition for existence of complex derivative:

lim lim w — lim lim M
Az—0 Ay—0 h Ay—0 Az—0 h

=0

where h = Ax + iAy.
Let f(z) = u(z,y) + iv(z,y). Then

flz+Ax) - f(2) fz+idy) - f(2)

Alalcrgo Az - Algl/rEO 1Ay
i W@+ Az y) —u(zy) +i(v(z + Az, y) — vz, y))
1m
Az—0 Az
Ay—0 ZAy

so if we denote partial derivative of u : R? — R with respect to , we can write

Ju .0V Ou ov
Gt +ighe = ¢ (Go) +ign),

i.e. 5 5
U v
ov ou

This is called Cauchy—Riemann equations.

Example 4.2.8. (1) f(2) =z, z € C, the identity map. Then Vz € C,
hmw:hmmzl_
h—0 h h—0

f(z) =

)=7%, z € (C conjugation of identity map. Then
gt )

h—0 h h—0
h

()(

D‘

which we claim does not exist. Take h = pe’?, then r=e —2i¢ depends on angle of approach.
It’s also reasonable to check if Cauchy—Riemann can verify of this non-differentiability. We
write ¢ = u + v where u(x,y) = x and v(z,y) = —y. Then u, =1 # v, = —1.

Remark. However, as a function on R? — R?, (5) — <_xy> is differentiable by existence and

continuity of its partial derivatives.

Remark. [Demystification]
o If f/(2) := lim fleth) = flz)
—0 h

o Let h(Az) := (on> where Az — 0. Notice that

exists then clearly f is continuous at z.

hAzx) —
R

0
is just the partial derivative u,(z,y) + v, (x,y) which by linearity is just a—f(z) By similar
x

argument we conclude that if f/(z) exists then it equals both partial derivatives p () and
x
10
(2)-

iy

° (Zn) _ ’I’LZn_l
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Definition 4.2.9. f:Q C C — C is analytic or holomorphic at z € Q if U € 2, an open neighbourhood
of z where f is complex differentiable at its every point.
f is analytic in Q C C if it is differentiable at every point of 2.

Definition 4.2.10. f: C — C is entire if it is analytic at every z € C.
Remark. We can think of U as B,(z) for some r > 0.
Why do we need these definitions?

Example 4.2.11 (Functions complex differentiable at one point but not analytic). Consider f : z — |z|%.
It’s differentiable at 0 since

li h-h_ 0

hso b
But if we write f = u + v then u = 2 + y?, v = 0. So u, = 2z, v, = 0, u, = 2y, v, = 0, ie.
Cauchy—Riemann is only satisfied when z = y = 0. Therefore f is not analytic at z = 0.

We have the knowledge of previous Remark. But actually Cauchy-Riemann gives us something more.

4.3. Algebraic meaning of Cauchy—Riemann. Consider 2,z : R2 - R, z = 2 + iy and z = x — iy.

Then _

z+z _2—Z
2 0 YT

xTr =

By chain rule,

o 020 o
0z 0z0x 0z 0y
Suppose f is differentiable at z. Then by Cauchy—Riemann

0 _ 1 . i . 1 i

r (2,2) = i(uz +ivg) + §(uy +dvy) = §(um —vy) + §(uy +v,) =0.

i.e. f doesn’t depend on Z, so we can simply write f(z) (which we are interested in) instead of f(z,Z.
Soon we will find out that the reverse is also true: complex differentiability < differentiability in R? +

Cauchy—Riemann (or lack of dependence on Z).
Let ¢ : C — M2(R), z = (a + ib) — (a

b
bijection. But it’s also an isomorphism:

O e i ) IS GARI ) B (it R EIEN

Y1 +y2 1+ 22 Y1 T Y2 T2

_10
T 20z

N | .
Sle

_ab) It’s an injection, and ¢ : C — Im ¢ is of course then a

and

¢<Z1Z2>=(m2yly2 yy):(’ﬂ yl) ( y2)=¢<zl>¢<@>.

T1Y2 + Y122 T1X2 — Y1Y2 Y1 T Y2 X2

Let ¢ : C — R?, x + iy — <z) which is norm preserving: |z| = [1)(2)|g2. Note that it respects ¢:

Ylzz) = (T2 T — () = (T T (1),
i) G )G

T1Y2 + Y122 Yy1 Y2

so it’s an isomorphism between modules C, R2.

Theorem 4.3.1. f: Q — C is complex differentiable at z € § if and only if it is differentiable at (Rz, 3z)
as a function Q C R? — R and its partial derivatives satisfy Cauchy-Riemann.

Proof. =: Suppose
CLE ORI
h—0 h
By norm-preserving of ¢ we have
UG G - N
h—0 b (h)| '
SO
Y f (4 h) -9 f(z) - ([ (2)R)] _
= 900 -
where ¥(f'(2)h) = ¢(f'(2)) - 1(h) as we've seen. This means ¢ f is differentiable at ¥ (z) = (g%j)

with derivative ¢(f’(z)). Satisfaction of Cauchy—Riemann was previously checked.
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<: Suppose 9 f = (Z) is differentiable at (5) = 9(z). We can write

i [5G+ 1) = 0£(2) = DUS () - w0l
A FQ)e

where
Uy Uy

) the Jacobian (seen in MA259)

Vg Uy

= (ux —vx> by Cauchy-Riemann

Uy Uy
= (up + ivg) by definition
So by norm-preserving of ¥ and ¢(f.(2))(h) = ¥(f.(2) - h) we can write

flz+h) = f(z) = fa(2)h
h

i.e. f is complex differentiable at z and f'(z2) = f.(z) = %f(z).

lim
h—0

:0’

Theorem 4.3.2. Let f,g: Q2 — C be analytic. Then

s (f9)' =Fg+fg
o (L) =12t 20
g g

* (f(9) =1'(9)-¢ ImgCQ)
Example 4.3.3. f: 2z — 2" on C, n € Ny. f is entire and f/(2) = nz"~!. We can see this since
(z,y) — (x +iy)™ is a polynomial with respect to x,y, which is differentiable, and
0 07 . (1 i
=nz

n __ n—1%~ Xl_x(—i)>:n2n_l><0:0~

oz~ " b2 2 2

So Cauchy—Riemann is satisfied.

4.4. Power series.

0o k
Definition 4.4.1. (a,) C C. Z an converges if (Z an> converges in C.

n=0 n=0

oo oo o0
Definition 4.4.2. Z an converges absolutely if Z lan| = Z V GGy CONVErges.
n=0 k=0 k=0

Theorem 4.4.3 (Root test).

>1= Zan diverges
n

lim sup |an|%
n—00 <l= Z a, converges (absolutely)

n

Theorem 4.4.4 (Ratio test). (a,) C C and a,, # 0 eventually. Then

e limsup

Ap+1
n—oo 29

<l= Zan converges (absolutely)

n

a .
2411 > 1 eventually = Z a, diverges
427

n

e If L:= lim M exists then L > 1 = divergence, L < 1 = convergence

n—oo Gy,

Remark. Above 2 theorems are proved using comparison with geometric series
1
(o]
—_— zl <1
S i . seC
k=0 divergence |z| > 1
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Theorem 4.4.5. Given (a,) C C, then 3R € [0, 00] : Zanz" converges Vz when |z| < R and diverges
k=0
Vz when |z| > R. R is called the radius of convergence, and

B 1

= I
lim sup |a,|»
n— oo

1
w=0.

and we assert R = oo when limsup |a,
n— oo

Proof. This formula is directly from applying the root test to Y.~ j anz". By linearity of lim sup we write

>1= Z a, diverges

lim sup |a,, 2" "= || lim sup |a,, | = .

n—o0 n—oo <1l= Z ay, converges (absolutely)

n

then if we denote R as stated in the theorem we have desired result. O

Theorem 4.4.6. Let R > 0 be the radius of convergence of Z anz". Then VO < r < R, Zanz”
n=0 n=0

converges uniformly with respect to z on @T(O).

Proof. Exercise. (Identical to the real case.) O

o0 oo
Theorem 4.4.7. Let Z a, 2" have the radius of convergence R > 0. Then z — Z a, 2" is analytic in
n=0 n=0

Br(0). Moreover,
o0 / o0
(Z anz"> = Z na,z" 1, |z| < R.
n=0 n=1

Proof. We know (2")" = nz""1. Consider Z na,z" . Then

n=1
li ‘ ‘ i li R : , ‘ | z li | | z
11m sup (na v 11m su nn QAp | ™ 1m sup |Gq, | ™
" p n " p n " p n 9

1

11,
linn =en 087

i.e. the two series on two sides of statement share the same radius of convergence R. We can therefore
oo

o0
say Zanzn converges pointwise and Znanznfl converges uniformly on Bg(0) : the condition for
n=0

n=1
interchange of limit and derivative, i.e. termwise differentiability (Theorem 3.2.10):

oo ! o0 o0

/ —
E anz” | = g (an2™) = g napz""t.
n=0 n=1

n=0

O

Remark. This proof requires formulation of complex integral which will be introduced later. If you are
not convinced without this definition, see typewritten notes for a “manual” proof.

Corollary 4.4.8. Let Zanz" have the radius of convergence R > 0. Then f : z — Z anpz" is 0o
n=0 n=0
complex differentiable on Bg(0) and

FR0) = ark!
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Proof. Tteration of above theorem gives

¥ (z) = Zn(nf - (n—k+1)a,z""

ag

3
Il
>

SO
fE0) =k(k—1)---1-a = klay.

|
4.4.1. Ezponential and circular functions.
Definition 4.4.9. For z € C,
o0 Zn
=2 ol
n=0
- (_1)71 2n
cos z 1= Z
|
— (2n)!
. - (71) 2n+1
sin z 1= Z
|
— (2n+1)!
cosh z := —
!
= (2n)!
0 Z2n+1
inh z := —_—
S nzz:o 2n+1)!
Using ratio test we can see R = oo for all of above.
Example 4.4.10.
(o] ! o0 ( )/ (o] 1 o0
2z Z" z"
<e2>’—<2> => =) ST = e
| | — 1) |
n=0 n n=0 n n=1 (n 1) n=0 n
Proposition 4.4.11.
612 Jr e*’LZ
cosz =
2
) eiz _ e—iz
sinz =
2i
coshz = e te
2
sinh z = i
2
Proof.
frfe i 11 N N T B G DI
9 inz:%a((lz) + (—iz)") = ;E 9 (iz)
0 when n is odd
(oo} (oo}
_ Voo 5D
=Y o A7 = 2 (k) = TR
k=0 k=0
Proofs of remaining statements are left as an exercise. |

Note for = € R, plots of cosx and cosh x look very different:
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cosh x

[S)

4 =2 2 4
But in the complex plane, cosh is just a composition of cos and its 5 rotation, i.e. cosh z = cosiz and
similarly sinh z = siniz.

Theorem 4.4.12 (Properties of exponential).

1) et = e%e¥ Vz,w e C

2) e #£0 VzeC

) " =1 2=2%kni, keZ
F=—le2=02k+1mi, keZ

Q™

3
4)
4.5. Argument and Log. We can write z as |z|e??. Let 2,25 # 0, then

21| = |z

_ <:> 7;91 — i02 <:>
21 =22 & |21e |z2le {91 — 0y =2k, keZ

So we define the function arg : C\{0} — {subsets of R} by
z— {0+ 27k, k € Z}.
Note that arg is a multivalued or set-valued function.

Proposition 4.5.1 (Properties of argument). (1) arg(az) = arg(z) for a >0

(2) arg(az) =7+ arg(z) for a <0

e To see this note that a = (—a)(—1) = |ale’™

(3) arg (1) = —arg(2)

(4) arg(z) = —arg(z)

(5) arg(zw) = arg(2) + arg(w)

We can see there’s much unnecessary ambiguity of arg, so we define a single valued function related to
it, called principal argument:
Arg(z) = (—m, 7] Narg(z)

Note that Arg is not analytic in C\{0}:

lim A ( i(wfs)) _

leol rg (e 7r
lim Arg (ei(’”'s)) =7,
el0

but

lim |e?(7=¢) — gilmt+e) | —
el0

R}

T™+e€
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Now we would like to find w : e = z. We know

e = |Z|€Z€ — elog|z|+zarg(z)7

so define log : C\{0} — {subsets of C} by z — log z = Log |z| + i arg(z) where Log is logarithm of RT.
Similar to arg, we have a single value version z — Log(z) = Log|z| + i Arg(z).
Unfortunately we have a clash of notations of real logarithm and complex principal logarithm.

Proposition 4.5.2 (Properties of logarithm). (1) log(zw) =log z + logw
(2) logz=! =log 2

Similarly Log is not analytic in C\{0}: for any = < 0,
lim Log(z + ie) = log |x| + im
el0

lim Log(z — i¢) = log |x| — i,
el0

so it’s not continuous at {z < 0}.

&2

But we see that Log is analytic on C\{z < 0} by checking Cauchy—Riemann equations. (This is called
a “branch cut”.) Now we can apply calculus:
eLogz =z

(eLogz)’ — 1= (LOgZ)’BLOgZ — (Logz)’z
, 1
so (Logz) = —.
z
IfaeC, z+#0, we define
L0 .= ealogz _ e(xlog|z|+aiarg(z)

which is set-valued. If « € Z then z — z® is single-valued:

i(ab+2r ko, kez)
ete arg(z) _ N &7 _ ezae

)

and if o = :I:%, p,q € N, then z“ consists of at most ¢ elements:
{eaLog\z|62m‘ak 0<k<q-— 1}7
and in particular we have the ¢-th roots of unity
14 2{627”% :ng‘gq—l}.

R}
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4.6. Complex integration, contour integrals.

Definition 4.6.1. f: [a,b] — C is integrable if Rf,Sf : [a,b] — R are integrable. Then

/abf::/abéReri/abe eC.

Proposition 4.6.2 (Properties of complex integration). (1) Linearity: o,8 € C, f,g : [a,b] = C

integrable, then
b b b
[asvpn=af 5/

(2) Interchangeability of conjugation and integration:
b b
L=17

b b
JEEIAL

Check. (1) Let @ = p+iv, f=u+iv, then
af = (pu —vv) +i(pv + vu).

(3) Triangle inequality:

By definition and linearity of Riemann integral,
b b b b b
/af:u/ufz//eri ,u/erz//u
b b
= (u+iu)/ u—i—i(,u—i—iu)/ v
b
— (i) [ (et iv

b

=af f
a
(2) Left as an exercise.
(3) We know
b b
/f:/few for some 6 € R.
So

[l fonfin
/ab(e_wf):/abu-i-i/abv

but this is real, so f: v = 0. We can therefore use the triangle inequality for real and conclude that
b b b b b
/ ug/ |ul S/ \/u2—|—v2/ e f| :/ If]-
a a a a a

A more important aim is to define integral for f : C — C. Such functions can be viewed as vector fields

Let e f = uw+ iv, then

O

on R?, suggesting we can borrow the idea of line integral: / f dz where I' is an oriented curve in C. We
r

need some terminology.

Notation. (1) v: [a,b] — C denotes a C' map called a parameterised curve.
(2) T = ~([a,b]) C C, this is an unparameterised curve, the equivalence class of maps from R to C:
Y1 ~ 2 if Im yp =Im 7 .
(3) If I is oriented, then —I" coincides with I" as a subset of C, but has the opposite orientation
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/Ff(z)dz:/rfdz:/rf.

We use f"/ f to emphasise parameterisation.

(4) Shorthand:

Remark. For orientation to make sense, it is sufficient for v to be regular if 4’ # 0 (you have tangent
vector everywhere)

Definition 4.6.3. Let I' C C be oriented and ~ : [a,b] — C its parameterisation. Define

b d
/ f o= / Fo )Y () b
I a

If T is piecewise O, i.e. I' = [JT'; where I';’s are almost disjoint, then

RN

Standard properties of Riemann integrals like linearity and additivity hold.

Lemma 4.6.4 (Representation invariance) (1)

Lol

(If v : [a,b] — C, then —y = y(a+b— ) (shift by a + b then change sign)
(2) If v : [a,b] — C and ¢ : [a,b] — [a,b] is bijective, increasing and C*, then

/ yog /

(¢ is an orient-preserving reparameterisation)

Remark. (1) By analogy with multivariable calculus we can define
/If\IdZI f/ ) - (1) dr
Notice that if f =1, and write (¢ ) + iy (t), then the above integral is

/ /2 + y/2( ) dt
so it’s just the Euclidean length of I'. Hence
< [ 16w a

/Ffdz - /abfw ) dt

< supl(2)] / /()] dt = sup|f| - length of T
zel a T

/Ff dz := /abf(v(t)) -'(t) dt,

but we will be mostly interested in
/ fdz
r

where f is analytic in an open subset ) C C and I" € Q) is an oriented curve. If we start considering
all the versions of integrals we have listed here, we would end up reproducing theory of line
integrals over vectors fields in R%. So by looking at the integral above, we specify on a very special
class of vector fields, and this speciality comes from analyticity.

Example 4.6.5. (1) Consider

(2) We can define

/ 2" dz, nez
I'=0Bg(0)

where OB (0) is circle of radius R, centred at origin and oriented counterclockwise. We parameterise
it by .
y(t) = Re™, t € [0,27].
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Then by definition,
27 ) ) 27 )
/z" dz = / (Rezt)n “iRe™ dt = iR"'H/ et gt
r 0 0

2
= iR"H! / (cos(n+ 1)t +isin(n + 1)t) dt
0

0 unless n+1=0
2m
=iR" "6, 1 / 1 dt
0
= 27T7;6n’,1,

which doesn’t depend on R!
(2) From the above we can consider the exponential integrated on the same I'; by its uniform
convergence we can swap integral and infinite sum:

/ezdz:/Z—dz—Z /z dz— —27?15,%,1—0
L Fn:O n= 0

(3) Consider

e?
/;Zkﬁ dZ, ke NO.

We rewrite

=1 =1
[ tae =y [era
Fn:On' n:On. r
=1
= Z — 2001, —1
n:On'
=1 1
=2mi Y —0, 5 = 2mi—
m;::on! mk|

Note that % is the k-th term of Taylor of exponential at 0. We are integrating by differentiating. Also,

take k = 0, we are integrating % whose antiderivative (called exponential integral, a special function) is
not expressible. We now can do something beyond Fundamental theorem of calculus.

Example 4.6.6.
Ik:/ 2F dz, k€ Ny, R > 0.
6]BR(1+Z)
We start with parameterising the circle by

v=(1+1)+ Re",  te]0,2n],

so by definition

2
I :/0 (1+i+ Re)" iRe™ dt
2(4) 7'

= / (1+i+4w)* dw change of variables
OB R (0)
"k

= Z < )(1 + i)k*"/ w™ dw = 0. by binomial and previous example
—o \" OBR(0)

Theorem 4.6.7 (Complex FTC, or line integrals of conservative fields). Let F': Q — C be analytic such
that F’ = f is continuous and 7 : [a,b] — € be an oriented C! curve in Q. Then

/ f dz = F(3(b)) - F(y(a)),

i.e. integral only depends on end points.
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Proof.
b b
dz = ) (t) dt = F'(v()~ (¢) dt
Lf i /afmm() / (VW (1)

a

by _
= /a &F(v(t)) dt chain rule
= F(v(b)) — F(v(a)). usual FTC

Remark. () doesn’t have to be simply connected.

4.6.1. Link with multivariable calculus. Let 7 : [a,b] — R? be a curve in R?, v : R? — R? be a vector field.

If C =1Im r is closed, then
b
[ear=[Caee) v ar
C a

is called the circulation of v around C.

Now let Q C R? be a regular domain (open, bounded, with piecewise C' boundary) which is positively
oriented: meaning N (t) = r/(t) X e, is outward normal. (We are thinking 2-d as a subspace of 3-d, e, is
the unit vector pointing from the board toward the viewers).

The most important particular case, from which we will build everything, is Q = 9 where ~ is simple
closed curve oriented counterclockwise.

Explicitly, if r/(t) = (2/(¢),y'(t),0) and e, = (0,0,1), then
(%) N(t) =r'(t) x ez = (' (t), —2' (1), 0).

If Q is positively oriented in this sense, then flux of u through 0f is

b;
/my.N dt = Z/a w(y(t))N(t) dt

where the sum is over connect components of 0f2.
Let © C R? be regular, positively oriented. Then

/ng dz dy :/ u-dr
Q ~—~— N

area element

(Green’s theorem) and similarly

/V-gdxdy:/ u- N dt
Q o0

Remark. f:=u+iv:Q— C. Let v: [a,b] = Q be a curve. Consider

(Divergence/Gauss’s theorem).

b b b
/fdz=/ (U+iv)(vi+i’yé)=/ (uvi—vvé)ﬂ'/ (vy1 + uys)
o a a a

b b
— [0y i)+ [ w0 (5 a0) by () above
a N—— a
v (t) N(t)
= circulation of f + i flux of f

where f is a vector field built out of f which is written by (u, —v) : R? — R2.

Theorem 4.6.8 (Cauchy’s). 2 C C is open, simply connected. f :  — C is analytic, v C Q is a C*
closed, simple curve (i.e. a contour). Then
/ fdz=0.
y

Proof. Let D C C be the domain bounded by v (the interior of v). D is then regular and D = ~. D
indeed exists by Jordan curve theorem. We claim D C Q. Indeed, suppose D ¢ Q. Then dzy € D :
2o & §2. Since Q is simply connected, there is a family of curves (v;):e[o,1], @ continuous deformation of
Yivo =77 =21 € Qand vy C QVte[0,1]. Since zg # 21, 3¢ > 0: 2 is in the exterior of v;_.. By
Intermediate value theorem, 37 € [0,1] : z9 € 7, C Q, a contradiction.
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So f is analytic in D Uy, and

/f dz = circ, (f) + i flux,(f)
.
= / Vxf+ z/ V-f Green’s on first term, Gauss’s on second
D - D

() (2
b Jdx Oy ZD Jdx Oy

=04+1-0 Cauchy—Riemann

Remark. (1) Analytic functions give rise to very special vector fields f with both curl f and div f
equal to zero. B N N
(2) Consider fé)IBR(O) 271 dz. 27! is analytic in C\Bg(0) VR > 0, which is not simply connected, in
other words, we cannot deform a circle to a point since the hole won’t let us. And indeed we know

the integral is 273 # 0.

It turns out that Cauchy’s theorem is a very powerful tool for computing contour integrals.

Theorem 4.6.9 (Contour deformation). Q C C positively oriented, regular such that 9Q = v; U+, and
Y1 N2 = & and ~;’s are contours. Let f : QU~; U~s be analytic. Then

[+ =0

Equivalently,

(Deforming the contour within in the region of analyticity does not change the integral of an analytic
function.)

Picturesque proof. Parameterise v; from p; and 7 from ps to p;. Note that Q\n is simply connected. So

by Cauchy’s lheorem,
A(Q2\n) Y1 -n

Y2
f+ 7
71 2

n
v
=0.
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D1 T

O

Remark. (1) Terminology: given contour ~, I(v) denotes interior of v which is open, bounded subset

of C and 9I(y) =, and I(y) = I(y) U~. O(y) denotes out outside of -y, which is equal to I(V)C.
(2) We established before that
/ 2" dz = 2mid,, 1.
OB R(0)

Now similarly,

/ (z—a)" dz = 2midy,—1.
OBR(a)

1 / 1 0 z€0(v)

2mi Jy 2 —w 1 zeI(7)
since if z € O(7y) it’s just Cauchy’s theorem, but if z € I(y) we can surround z by a ball and
deform ~ to the ball continuously, and by previous theorem the two integrals are the same, so it’s

2mi
ami = L

Fix z € C,

Theorem 4.6.10. Let v C C be a contour (oriented counterclockwise). Suppose f is analytic in (7).

Then Vz € I(y),
_ 1 [ f(w)
1) = gy | % o

i.e. given analytic function and its values on a contour, we can give value of the function anywhere inside
the contour.

Proof. Note that f(w) is analytic in I(y)\Br(z) where R > 0: Br(z) C I(v), so

w—z

L/ f(w) do— L f(w) duw

2 ), w —z 20 Jopgp(z) W — 2

_ S 1 Jw) — f(2)
o 211 /6BR(Z) w—z d'LU+ 211 »/QIBR(Z) w—z duw

= f(2) + ‘AB()WQ)+gAw)mv

where |g,(w)| — 0 as |[w — z| = 0, and since R is arbitrarily small,

1
211

1

2mi

1

2T JoBg(2)

[1'(2) + g=(w)]|dw]|

/ F(z) + g.(w) dw
OBR(z)

IA

;Qﬂm+swlwm>%R

z€BR(2z)

=0

so the error term vanishes and we have what’s desired.
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IBR(2)

We can generalise this statement.

Theorem 4.6.11. Let v C C be a contour (oriented counterclockwise). Suppose f is analytic in (7).
Then Vz € I(y), ¥n € Ny,

F0) = g [ du,

i.e. the derivative of any order exists at any point where f is analytic and we can differentiate by
integrating.

Shortcut proof. f is analytic at every w € 7. Therefore 3e(w) : f is analytic in B.(,)(w). Consider
{B.(w)(w)}wey, which is an open cover of v, i.e. union of elements in this set is open and contains 7.
Note that v is compact (closed, bounded), so by a theorem which will be proved in MA260, 3 a finite
subcover {B.(,,)(w;)}~, of 7. Let ¥ be a contour such that

N
v C (U Bs(wi)(wi)> N 0(7)

i=1
The following picture makes clear. The thick curve is =y, where f is analytic, so we can exploit this fact
and find an outside curve which is still in the ball-cover, and f is analytic in 7 and I(7).

Then by previous theorem

1) = o [ T o
" feam S 1 [ fw)  fw)
h _th/§wzh w—zdw
1 fwh
_QhWi/:/(w—z—h)(w—z)d
1 1 1
where
Eh:/f(w)< L ! ) dw
5 (w—z—-h)(w—2) (w-—2)2
— [ sw) " du

— h/ Jw) dw
for any |h|<rT OBag(2) (w — Z) (w -z — h)

where the integrand is uniformly bounded as |w — z — h| > 7.
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Therefore as h — 0, Ej, vanishes. Hence

1 1
= — R —— d .
27Ti /’;f(w) (UJ _ 2)2 w
Now, pick any z € I(¥),

f(z+ h}i —f'(z) _ 2hl7ri /af(w) ((w — Zl, e (w ,1 2)2) dw

_ 1 w 2w—2)—h w

- 2mi 5 ( )(w—z—h)2(1u—z')2 d
2 w

= % L (u‘)f(— 2;))3 dw + Eh

where we separate the integral to the target and error term Ej by putting h = 0. Then E, - 0ash —0

similarly, so we have
2 f(w)
11
= — _— d s
1) 2mi /:y (w—2)3 v
as desired. We proceed by induction to get the general result: f”(z) exists Vz € I(¥) = f’ is analytic in
I(3) = f’ is analytic in I(y). So we’ve proven that

f analytic in I(y) = f’ analytic in I(y).
Therefore f(™) is analytic in (7). So by Theorem 4.6.10,

(n)
Nm:%/%%%w

1
=55 ( /f(" D( )8 dw) integration by parts
i

oww—z
(n— 1) d
27rz / / ) v
/ f (n— 2) dw integration by parts again
27m )
again and agam
27.” / f _ n+1 d’l,U,
as desired. O

4.6.2. Consequences of Cauchy’s theorem.

Theorem 4.6.12 (Taylor’s theorem). Let f be analytic in Br(a) C C, R >0, a € C. Then 3!(¢p)n>0 C

C:Vz € Br(a),
= Z en(z—a)",
n=0

Ry - o TP @)

= o (w— z)ntt YT

where v C Br(a) is any contour such that a € I(7).

moreover,
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(Informally, if f is analytic at a then its Taylor series has a positive radius of convergence and is equal
to f within the corresponding ball.)

Proof. We know Vz € Br(a), 3y € (J]z —a|,R) : B.(a) C Br(a).

)

Since f is analytic in B,.(a), by Theorem 4.6.10 we have

o= [ LW,

270 Jom, (a) W — 2

:L/ fwyw=a,,
0.

2mi Jop, (a) W —aW — 2

1
:7‘/ f(w)%dw
270 Jom, (@) W —al— Z=%

a

Note that

z—a| |z—ad

<1

w—a r

So

k)

w—a

which converges uniformly with respect to w by the M-test. This means we can interchange integration
and summation and we have

o, wwg§<za)"

n=0
)
———dw (2 —a)™
2mi Z /am (@ ( —a)” ( )

By Theorem 4.6.11 this is what’s desired. 0B, (a) can be replaced with any 7 encompassing a by Contour
deformation theorem (v C Br(a)).
For uniqueness, suppose

(%) f(z) = Z bn(z—a)" VzeB,(a) for some p >0

then the right hand side of (%) converges uniformly in B,/ (a) Vp' < p. So we can differentiate term by
term for any z € B,/ (a). By Theorem 3.3.4, b, = % f(")(a ) = Cp. O

Example 4.6.13. Let f: 2~ (14 2)% in By (0) and a € C fixed. We know f(z) = e®°8(1+2) is analytic
in B1(0) since z — e* is entire and Log(1 + z) is analytic in C\{z < —1}. So for any p < 1,

(14 w)
(1 d
+2) Z 27i /8]E T Y
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1 (1+w)®
If we denote 57 faIB,,(o) = dw by ¢, we have

1 1

/
= [ (™) (1 +w) d
Cn=5—=— (w™™) (1 +w)* dw
11 -n a—1 : :
=—— [w "a(l+w) dw integration by parts
2mi n!
1
= 7.2/ w (1 +w)* dw
2min 9B, (0)
1 -1
= 7_@/ w™ " (1 4 w)2 2 dw by parts again
2rin(n —1) 9B, (0)
n—1

1 a—k/(l—i—w)“’” duw

27i n—k w
k=0
_ﬁa—k/(l—kw)“_” dw
o n—k w 2
k=0

We know w +— (1 + w)*™™ is analytic at w = 0. So

(1 + w)a—n _1a—n

_ = (1+2)°™) Jsm0 + p(w)

where the error term p(w) — 0 as w — 0. So

1 1 a-n 1 1 1
— %dw:—_ — dw+ — (a —n) + o(w) dw,
27 JaB, (0) w 2m ) w 27 Jom,(0)
—_———
1 0

therefore

By above theorem, > ¢, 2™ converges for any |z| < p where p € (0,1), so radius of convergence R > 1.
Theorem 4.6.14 (Liouville’s theorem). Let f: C — C be entire. If f is bounded, then f is constant.

Proof. f is bounded, meaning IM > 0: |f(z)] < M Vz € C. For any z € C, take R > |z|,

OBR(0)
then
o L[
271'2 DBR(O) w
and
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To see f is constant we need f(z) — f(0) = 0. Indeed:

1 1 1
7/ f(w)< — ) dw
21 OB R (0) w—z w

1f(2) = F(O)] =

2| / 1
=_— fw)——— dw
27 | JoB R (0) ( )(w —z2)w
< l2] |f (w)] duw|
27 Jomp(0) lwl|w — 2|
|| M
<o oy ldwl
27 Jom (o) R(R — |2])
lz| M
S ] D LN 95
o R(R— |2]) "
_ M
 R—|7|

but since f is entire, we can have R as large as we want. Therefore IL;_“‘VZI‘ — 0 and therefore f(z) = f(0). O

Theorem 4.6.15 (Fundamental theorem of algebra). Let p : C — C a non-constant polynomial. Then
Ja € C: p(a) = 0. (Any complex non-constant polynomial has a root.)

Proof by contradiction. Suppose p(z) # 0 ¥z € C. Then f := % is analytic in C, i.e. entire. Indeed,
z+ p(2) is entire and « — L is analytic when x # 0. Since p is non-constant, In > 0: p(z) = > _ cx2”
where ¢; # 0. So |p(z)] = oo as |z| = co. Then IR > 0: |p(2)| > 1V|z| > R. So |f(z)] <1V|z|] > R. But
for |z| < R, f is also bounded, as an analytic hence continuous function on a closed bounded set. We
conclude that f is entire and bounded, so constant, hence p is constant which is a contradiction. O

Theorem 4.6.16. f, : Q@ — C, Q open, n > 1 are all analytic in Q. If f,, = f : Q — C, then f is
analytic.

Proof. Vz € Q, let r > 0, pick small enough B,.(z) C Q. Since f, is analytic,
1 n
Falz) = — / fa(w) dw
211 OB,.(z) W — 2

SO

L. fn(w)
= — lim d
£(2) /3 » w

271 n—o0 w—z
1
- 7/ f(w) dw+ lim E,(2)
271 BIBT(Z) w—z n—o0o

where F,,(z) is the error term (difference of the two). We know that by uniform convergence, Ve > 0, 3N, :
Yn > Ng, sup|f — fn] <e, so
Q

‘En(z)|<i/m ( )|f"(“))_f(w)| |dw|

~ 27 |lw — 2]
1
< 76/ 1 |dw|
27r OB,.(z)
= %6271'7‘ =g,
s0 limy, 00 En(2) =0, ie.
1
f(z) = f(w) dw.

o % OB, (z) w—z

Note that f,|om, (z) = flog,(z), 50 floB, (») is continuous (on a closed bounded set), hence bounded. From
the proof of Theorem 4.6.11 we know that f’ exists at every point z € Q, i.e. f is analytic. |
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4.6.3. Calculation of integrals over R using Cauchy’s theorem.

Definition 4.6.17. Let f be defined on a subset of C. f has a pole of order m € N at a € C if 3 a
neighbourhood U of a : Vz € U\{a},

= C-m Com+1 . €1
1) = (z—a)m + (z —a)m—t Tt z—a +4(2)

where ¢ is analytic in U, ¢; € C are constants. Moreover, c_; is called the residue of f at a, c_1 = Res f(a).
Cc—m # 0.

Having a pole means the function is not defined at a certain point but on a neighbourhood of it, and
we know that as we approach the point the function blows up at a rate quantified by the pole’s order m
and described as a Laurent polynomial of the distance.

Example 4.6.18. Let f: 2z — a > 0. We claim f has first order poles at z = +ia. Indeed,

2+a2 9

1 1 1
f(z):%a(z—ia_z—f—ia)

and we can read off the pole z = ia, corresponding ¢(z) =

-2 Ha and Res f = }a from the above and

the definition. Similar (in fact symmetrically) for the other pole z = —ia.

Theorem 4.6.19 (Residue theorem). Let v C Q) be a contour oriented counterclockwise. Suppose f is
analytic in I(y)\{z1,..., 2n} where z;’s are finitely many points living inside I(y). Moreover, suppose f
has poles at zq,...,2z,. Then

/f(z) dz = 227”' Res f(zk).

k=1

Proof. Choose r > 0 such that f(z) =Y, ck(z — 21)* + ¢1(2) is analytic in OB, (z).

By contour deformation theorem,

/f /yUnUBJB% (z1)U(— y)f:/f+/,f+/am (zl)f+/ f
LI

—m
/ f:ch / (Z—Z1)k dz +/ ¢1 dz
8IB§T(21) k=1 BBT(Zl) 6IBT(Z1)

—_———
2740k, —1 by Remark before Theorem 4.6.10 0 by Cauchy
= 2mic_y = 2mi Res f(z1).

Now perform induction on 7 we have what’s desired. |

° 1
o Tt a

which is improper and absolutely convergent. We know this before introduction of complex analysis and
we do this by computing

(%)

where

Example 4.6.20. Calculate

L |
lim -5 dzx.
R—oo _R s + a
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FTC: Let © = ay, then

R

1 [ 1 1
I = lim f/ dz = lim — arctan(zx)

rx?+1 R—oo @
a

Contour integrals: Let CfR) be parameterised by ¢1(z) = z, € [-R, R] and CéR) by ca(r) = Re®, x €
[077'(], and YR ‘= Cl @] CQ.

Then

1
I = lim / - dz
R—o0 CiR) z¢+a

1 1
R—oo Jo® 2% 4 a o 2= +a
—_————
10
= lim —— dz

R—o0 y Z2 +a2

. . ™
= lim 27— = —.
R—o0 2ia a

(Sanity check: as R — oo,

1 1 1
c® 22 +a o® |22 +a?| —~~ R?
2 2 N—— R dt

~R2
Lemma 4.6.21. f,g: U — C analytic, U open. Let a € U : g(a) =0, ¢'(a) # 0 and g(z) # 0 Vz # a.

Then 5 : U\{a} — C has a first order pole. Moreover, Res g(a) = gf,((‘;))

Proof. Analyticity means 3Ry > 0:Vz € Bg, (a) C U,

1= = ()3 )

—q’
g1=g'(a e 9

h(z)

and f, h are analytic in Bg, (a). Also h(a) =1, so 3Ry € (0, R1] : h # 0 in Bg,(a), so that % is analytic in
Bg,(a). Hence ¥z € By, (a)\{a},

OO
9(z)  g1(z—a)h(2)
= 1 f(a) z—a)p(z
= = (i + - awto)
_fla) (1
- S (o).
which gives what’s desired. O

Example 4.6.22. We have
eikx
I(k):/idx, a>0, keR.
R

22 4 a2
Note that
eikw 1
x2 4+ qa2 22’
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so it converges absolutely. Hence, using the same Ci(R) and g notation,
R etk

Ih) = fim | ez

ikz
. &
= lim —— dz
R—o0 Jo (R 22 4+ a2

Now we know that ﬁ goes to 0 fast enough to ensure convergence, but what about the exponential on
the numerator? Note that as z — oo along the imaginary axis, e?** — 0 but as it — —o0, €% — oo, i.e.
we only have a chance of convergence if we enclose the curve in the upper half of plane (like we did in the

first such example). So

ikz ezkz
R—oo Jo(R) 2% +a o 22+ a
1 2

eikz
R— o0 . 24+ a
Let f(z) = e'**, g(z) = 2% +a?, then g(ia) =0, g(z) # 0 Vz # ia, ¢g'(2) = 22 # 0. So using the lemma
we know that % has a first order pole at z = ia and Res = ;,((ZC;)) = e;i’;“. By Residue theorem we
then have . .
—omiS =T ko
2ia a
For k < 0, we use lower half of plane and it’s symmetric, i.e. k — I(k) is even (can see this by change of
variables).
We conclude that
ﬂ.e—|k\a
(k) = , VkeR
a
(Sanity check: as R — oo,
ezkz - eikRe’
/ ‘7‘7dz§/\iT4?R&
o 22 +a o |22 +d?|
2R [T

6ikR(cos t+isint)

dt

R sufﬁcie_ntly large R? 0

2 " ikRcost —kRsint
=3 [ et jeinsne] g

2 [T “kRsint 2
== St di < = — 0.
R /0 X [dt= g~ 0)
See notes for a (similar) proof of

ikx
I(k:):/e do = — keR.
R

cosh x cosh %” ’
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